947 resultados para CO-CS2 CATALYST SYSTEM
Resumo:
Copper(II) acetylacetonate was anchored onto a hexagonal mesoporous silica (HMS) material using a two-step procedure: (i) functionalisation of the surface hydroxy groups with (3-aminopropyl)triethoxysilane (AMPTSi) and then (ii) anchoring of the copper(II) complex through Schiff condensation with free amine groups, using two different metal complex loadings. Upon the first step, nitrogen elemental analysis, XPS and DRIFT showed the presence of amine groups on the surface of the HMS material, and porosimetry indicated that the structure of the mesoporous material remained unchanged, although a slight decrease in surface area was observed. Atomic absorption, XPS and DRIFT showed that copper(II) acetylacetonate was anchored onto the amine-functionalised HMS by Schiff condensation between the free amine groups and the carbonyl groups of the copper(II) complex; using EPR an NO3 coordination sphere was proposed for the anchored copper(II) complex. The new [Cu(acac)2]-AMPTSi/HMS materials were tested in the aziridination of styrene at room temperature, using PhI=NTs as nitrogen source and acetonitrile as solvent. The styrene conversion and total TON of the heterogeneous phase reaction are higher than those of the same reaction catalysed in homogeneous phase by [Cu(acac)2]; nevertheless, the initial activity decreases and the reaction time increases due to substrate and product diffusion limitations. The heterogeneous catalyst showed a successive slight decrease in catalytic activity when reused for two more times. © Wiley-VCH Verlag GmbH & Co. KGaA, 2006.
Resumo:
Background and Objective: Medication non-compliance is a considerable obstacle in achievinga therapeutic goal, whichcan result in poorerhealthcare outcomes, increased expenditure, wastage and potential for medication resistance. The UK Government’s Audit Commission’s publication ‘A Spoonful of Sugar’1 addresses these issues and promotes self-medication systems as a possible solution. The self-medication system within the Liver Transplant Unit (LTU) was implemented to induct patients onto new post- transplantation medication regimes ready for discharge. The system involves initial consultations with both the Liver Transplant Pharmacist and Trans- plant Co-ordinator, supported with additional advice as and when necessary. Design: Following ethical approval, evaluation of the self-medication sys- tem for liver transplant patients was conducted between January and March 2004 via two methods: audit and structured post-transplantation interview. The audit enabled any discrepancies between current Hospital guidelines and Liver Transplant Unit (LTU) practices to be highlighted. Patient interviews generated a retrospective insight into patient acceptance of the self-medication system. Setting: LTU, Queen Elizabeth Hospital, Birmingham, England. Main Outcome Measures: LTU compliance with Hospital self-medication guidelines and patient insight into self-medication system. Results: A total of seven patients were audited. Findings illustrated that self- medication by transplant patients is a complex process which was not fully addressed by current Hospital self-medication guidelines. Twenty-three patients were interviewed, showing an overwhelming positive attitude to- wards participating in their own care and a high level of understanding towards their individual medication regimes. Following a drugs counselling session, 100% of patients understood why they were taking their medica- tion, and their doses, 95% understood how to take their medication and 85% were aware of potential side effects. Conclusions: From this pilot evaluation it can be stated that the LTU self-medication system is appreciated by patients and assists them in fully understanding their medication regimes. There appear to be no major defects in the system. However areas such as communication barriers and on-going internet education were illustrated as areas for possible future investigation. References: 1. Audit Commission. A spoonful of sugar – medicines management in NHS hospitals. London: Audit Commission; 2001.
Resumo:
In this letter, we experimentally study the statistical properties of a received QPSK modulated signal and compare various bit error rate (BER) estimation methods for coherent optical orthogonal frequency division multiplexing transmission. We show that the statistical BER estimation method based on the probability density function of the received QPSK symbols offers the most accurate estimate of the system performance.
Resumo:
The German welfare state is in crisis. Alarming long-term demographic trends, the still not fully digested consequences of German unification and the current economic downturn in much of the Eurozone have combined to create an urgent need for welfare reform. Yet the constitutional arrangements which govern the German political system, and well-entrenched political practice, mean that any such reform process is a daunting challenge. Thus, the welfare crisis is also a crisis of German-style co-operative federalism. Current empirical evidence makes for uncomfortable reading, and triggers debate on the nature of the German federation: have the two constitutional principles of federalism and establishing equal living conditions throughout the federation become mutually exclusive? However, as much of the welfare state is centred on the best utilisation of scarce financial resources, it is debatable to what extent alterations in the functional distribution of welfare responsibilities among the territorial levels of government can be regarded as a solution for the current problems. The article concludes that in the search for long-term sustainability of the welfare state the territorial dimension is likely to remain a secondary issue.
Resumo:
The genesis of a catalytically active model Pt/Al2O3/NiAl{110} oxidation catalyst is described. An ultrathin, crystalline γ-Al2O3 film was prepared via direct oxidation of a NiAl{110} single-crystal substrate. The room-temperature deposition of Pt clusters over the γ-Al2O3 film was characterised by LEED, AES and CO titration and follows a Stranski–Krastanov growth mode. Surface sulfation was attempted via SO2/O2 adsorption and thermal processing over bare and Pt promoted Al2O3/NiAl{110}. Platinum greatly enhances the saturation SOx coverage over that of bare alumina. Over clean Pt/γ-Al2O3 surfaces some adsorbed propene desorbs molecularly [similar]250 K while the remainder decomposes liberating hydrogen. Coadsorbed oxygen or sulfate promote propene combustion, with adsorbed sulfoxy species the most efficient oxidant. The chemistry of these alumina-supported Pt clusters shows a general evolution from small polycrystalline clusters to larger clusters with properties akin to low-index, Pt single-crystal surfaces.
Resumo:
In this paper is proposed a model for researching the capability to influence, by selected methods’ groups of compression, to the co-efficient of information security of selected objects’ groups, exposed to selected attacks’ groups. With the help of methods for multi-criteria evaluation are chosen the methods’ groups with the lowest risk with respect to the information security. Recommendations for future investigations are proposed.
Resumo:
Coherent optical orthogonal frequency division multiplexing (CO-OFDM) is an attractive transmission technique to virtually eliminate intersymbol interference caused by chromatic dispersion and polarization-mode dispersion. Design, development, and operation of CO-OFDM systems require simple, efficient, and reliable methods of their performance evaluation. In this paper, we demonstrate an accurate bit error rate estimation method for QPSK CO-OFDM transmission based on the probability density function of the received QPSK symbols. By comparing with other known approaches, including data-aided and nondata-aided error vector magnitude, we show that the proposed method offers the most accurate estimate of the system performance for both single channel and wavelength division multiplexing QPSK CO-OFDM transmission systems. © 2014 IEEE.
Resumo:
We propose a robust adaptive time synchronization and frequency offset estimation method for coherent optical orthogonal frequency division multiplexing (CO-OFDM) systems by applying electrical dispersion pre-compensation (pre-EDC) to the pilot symbol. This technique effectively eliminates the timing error due to the fiber chromatic dispersion, thus increasing significantly the accuracy of the frequency offset estimation process and improving the overall system performance. In addition, a simple design of the pilot symbol is proposed for full-range frequency offset estimation. This pilot symbol can also be used to carry useful data to effectively reduce the overhead due to time synchronization by a factor of 2.
Resumo:
In optical communications, a high spectral efficiency can be realized by applying high order modulation formats such as 8QAM, 16QAM and 64QAM. However, depending on the system's requirements (bandwidth, performance and transmission distance), the maximum spectral efficiency may not be achievable with the regular 2m-array QAM formats. In this case, a hybrid modulation format, such as QPSK/8QAM, can provide an effective solution. In this work, we deliver the optimum design for single channel coherent optical orthogonal frequency division multiplexing systems with hybrid QPSK/8QAM modulation format. We also discuss a simple but effective strategy for applying hybrid QAMs for long-haul optical communications without considering sophisticated bit and power loading algorithms developed for wireless communications.
Resumo:
CO vibrational spectra over catalytic nanoparticles under high coverages/pressures are discussed from a DFT perspective. Hybrid B3LYP and PBE DFT calculations of CO chemisorbed over Pd4 and Pd13 nanoclusters, and a 1.1 nm Pd38 nanoparticle, have been performed in order to simulate the corresponding coverage dependent infrared (IR) absorption spectra, and hence provide a quantitative foundation for the interpretation of experimental IR spectra of CO over Pd nanocatalysts. B3LYP simulated IR intensities are used to quantify site occupation numbers through comparison with experimental DRIFTS spectra, allowing an atomistic model of CO surface coverage to be created. DFT adsorption energetics for low CO coverage (θ → 0) suggest the CO binding strength follows the order hollow > bridge > linear, even for dispersion-corrected functionals for sub-nanometre Pd nanoclusters. For a Pd38 nanoparticle, hollow and bridge-bound are energetically similar (hollow ≈ bridge > atop). It is well known that this ordering has not been found at the high coverages used experimentally, wherein atop CO has a much higher population than observed over Pd(111), confirmed by our DRIFTS spectra for Pd nanoparticles supported on a KIT-6 silica, and hence site populations were calculated through a comparison of DFT and spectroscopic data. At high CO coverage (θ = 1), all three adsorbed CO species co-exist on Pd38, and their interdiffusion is thermally feasible at STP. Under such high surface coverages, DFT predicts that bridge-bound CO chains are thermodynamically stable and isoenergetic to an entirely hollow bound Pd/CO system. The Pd38 nanoparticle undergoes a linear (3.5%), isotropic expansion with increasing CO coverage, accompanied by 63 and 30 cm− 1 blue-shifts of hollow and linear bound CO respectively.
Resumo:
A Ni-Mg-Al-Ca catalyst was prepared by a co-precipitation method for hydrogen production from polymeric materials. The prepared catalyst was designed for both the steam cracking of hydrocarbons and for the in situ absorption of CO2 via enhancement of the water-gas shift reaction. The influence of Ca content in the catalyst and catalyst calcination temperature in relation to the pyrolysis-gasification of a wood sawdust/polypropylene mixture was investigated. The highest hydrogen yield of 39.6molH2/g Ni with H2/CO ratio of 1.90 was obtained in the presence of the Ca containing catalyst of molar ratio Ni:Mg:Al:Ca=1:1:1:4, calcined at 500°C. In addition, thermogravimetric and morphology analyses of the reacted catalysts revealed that Ca introduction into the Ni-Mg-Al catalyst prevented the deposition of filamentous carbon on the catalyst surface. Furthermore, all metals were well dispersed in the catalyst after the pyrolysis-gasification process with 20-30nm of NiO sized particles observed after the gasification without significant aggregation.
Resumo:
Word Sense Disambiguation, the process of identifying the meaning of a word in a sentence when the word has multiple meanings, is a critical problem of machine translation. It is generally very difficult to select the correct meaning of a word in a sentence, especially when the syntactical difference between the source and target language is big, e.g., English-Korean machine translation. To achieve a high level of accuracy of noun sense selection in machine translation, we introduced a statistical method based on co-occurrence relation of words in sentences and applied it to the English-Korean machine translator RyongNamSan. ACM Computing Classification System (1998): I.2.7.
Resumo:
Secondary pyrolysis in fluidized bed fast pyrolysis of biomass is the focus of this work. A novel computational fluid dynamics (CFD) model coupled with a comprehensive chemistry scheme (134 species and 4169 reactions, in CHEMKIN format) has been developed to investigate this complex phenomenon. Previous results from a transient three-dimensional model of primary pyrolysis were used for the source terms of primary products in this model. A parametric study of reaction atmospheres (H2O, N2, H2, CO2, CO) has been performed. For the N2 and H2O atmosphere, results of the model compared favorably to experimentally obtained yields after the temperature was adjusted to a value higher than that used in experiments. One notable deviation versus experiments is pyrolytic water yield and yield of higher hydrocarbons. The model suggests a not overly strong impact of the reaction atmosphere. However, both chemical and physical effects were observed. Most notably, effects could be seen on the yield of various compounds, temperature profile throughout the reactor system, residence time, radical concentration, and turbulent intensity. At the investigated temperature (873 K), turbulent intensity appeared to have the strongest influence on liquid yield. With the aid of acceleration techniques, most importantly dimension reduction, chemistry agglomeration, and in-situ tabulation, a converged solution could be obtained within a reasonable time (∼30 h). As such, a new potentially useful method has been suggested for numerical analysis of fast pyrolysis.
Resumo:
Parkinson's disease is a complex heterogeneous disorder with urgent need for disease-modifying therapies. Progress in successful therapeutic approaches for PD will require an unprecedented level of collaboration. At a workshop hosted by Parkinson's UK and co-organized by Critical Path Institute's (C-Path) Coalition Against Major Diseases (CAMD) Consortiums, investigators from industry, academia, government and regulatory agencies agreed on the need for sharing of data to enable future success. Government agencies included EMA, FDA, NINDS/NIH and IMI (Innovative Medicines Initiative). Emerging discoveries in new biomarkers and genetic endophenotypes are contributing to our understanding of the underlying pathophysiology of PD. In parallel there is growing recognition that early intervention will be key for successful treatments aimed at disease modification. At present, there is a lack of a comprehensive understanding of disease progression and the many factors that contribute to disease progression heterogeneity. Novel therapeutic targets and trial designs that incorporate existing and new biomarkers to evaluate drug effects independently and in combination are required. The integration of robust clinical data sets is viewed as a powerful approach to hasten medical discovery and therapies, as is being realized across diverse disease conditions employing big data analytics for healthcare. The application of lessons learned from parallel efforts is critical to identify barriers and enable a viable path forward. A roadmap is presented for a regulatory, academic, industry and advocacy driven integrated initiative that aims to facilitate and streamline new drug trials and registrations in Parkinson's disease.
Resumo:
We demonstrate an accurate BER estimation method for QPSK CO-OFDM transmission based on the probability density function of the received QPSK symbols. Using a 112Gbs QPSK CO-OFDM transmission as an example, we show that this method offers the most accurate estimate of the system's performance in comparison with other known approaches.