900 resultados para Bite-force
Resumo:
Insect bite hypersensitivity (IBH) is an IgE-mediated dermatitis caused by bites of midges from the genus Culicoides. We have shown previously that peripheral blood mononuclear cells (PBMC) from IBH-affected horses produce higher levels of IL-4 and lower levels of IL-10 and TGF-beta1 than those from healthy horses, suggesting that IBH is associated with a reduced regulatory immune response. FoxP3 is a crucial marker of regulatory T cells (Tregs). Here we have determined the proportion of CD4(+)CD25(+)FoxP3(+) T cells by flow cytometry in PBMC directly after isolation or after stimulation with Culicoides extract or a control antigen (Tetanus Toxoid). There were no differences between healthy and IBH horses either in the proportion of FoxP3(+)CD4(+)CD25(+) cells in freshly isolated PBMC or in the following stimulation with Tetanus Toxoid. However, upon stimulation of PBMC with the allergen, expression of FoxP3 by CD4(+)CD25(+high) and CD4(+)CD25(+dim) cells was significantly higher in healthy than in IBH horses. Addition of recombinant IL-4 to PBMC from healthy horses stimulated with the allergen significantly decreased the proportion of FoxP3 expressing cells within CD4(+)CD25(+high). These results suggest that IBH is associated with a decreased number of allergen-induced Tregs. This could be a consequence of the increased IL-4 production by PBMC of IBH-affected horses.
Resumo:
Equine insect bite hypersensitivity (IBH) is a seasonally recurrent, pruritic skin disorder caused by an IgE-mediated reaction to salivary proteins of biting flies, predominantly of the genus Culicoides. The aim of this study was to define T cell subsets and cytokine profile in the skin of IBH-affected Icelandic horses with particular focus on the balance between T helper (Th) 1, Th2 and T regulatory (Treg) cells. Distribution and number of CD4+, CD8+ and Forkhead box P3 (FoxP3)+ T cells were characterized by immunohistochemical staining in lesional and non-lesional skin of moderately and severely IBH-affected horses (n=14) and in the skin of healthy control horses (n=10). Using real-time quantitative reverse transcription-polymerase chain reaction, mRNA expression levels of Th2 cytokines (Interleukin (IL)-4, IL-5, IL-13), Th1 cytokines (Interferon-gamma), regulatory cytokines (Transforming Growth Factor beta1, IL-10) and the Treg transcription factor FoxP3 were measured in skin and blood samples. Furthermore, Culicoides nubeculosus specific serum IgE levels were assessed. Lesions of IBH-affected horses contained significantly higher numbers of CD4+ cells than skin of healthy control horses. Furthermore, the total number of T cells (CD4+ and CD8+) was significantly increased in lesional compared to non-lesional skin and there was a tendency (p=0.07) for higher numbers of CD4+ cells in lesional compared to non-lesional skin. While the number of FoxP3+ T cells did not differ significantly between the groups, the ratio of Foxp3 to CD4+ cells was significantly lower in lesions of severely IBH-affected horses than in moderately affected or control horses. Interestingly, differences in FoxP3 expression were more striking at the mRNA level. FoxP3 mRNA levels were significantly reduced in lesional skin, compared both to non-lesional and to healthy skin and were also significantly lower in non-lesional compared to healthy skin. Expression levels of IL-13, but not IL-4 or IL-5, were significantly elevated in lesional and non-lesional skin of IBH-affected horses. IL-10 levels were lower in lesional compared to non-lesional skin (p=0.06) and also lower (p=0.06) in the blood of IBH-affected than of healthy horses. No significant changes were observed regarding blood expression levels of Th1 and Th2 cytokines or FoxP3. Finally, IBH-affected horses had significantly higher Culicoides nubeculosus specific serum IgE levels than control horses. The presented data suggest that an imbalance between Th2 and Treg cells is a characteristic feature in IBH. Treatment strategies for IBH should thus aim at restoring the balance between Th2 and Treg cells.
Resumo:
Salivary gland proteins of Culicoides spp. have been suggested to be among the main allergens inducing IgE-mediated insect bite hypersensitivity (IBH), an allergic dermatitis of the horse. The aim of our study was to identify, produce and characterize IgE-binding salivary gland proteins of Culicoides nubeculosus relevant for IBH by phage surface display technology. A cDNA library constructed with mRNA derived from C. nubeculosus salivary glands was displayed on the surface of filamentous phage M13 and enriched for clones binding serum IgE of IBH-affected horses. Ten cDNA inserts encoding putative salivary gland allergens were isolated and termed Cul n 2 to Cul n 11. However, nine cDNA sequences coded for truncated proteins as determined by database searches. The cDNA sequences were amplified by PCR, subcloned into high level expression vectors and expressed as hexahistidine-tagged fusion proteins in Escherichia coli. Preliminary ELISA results obtained with these fusions confirmed the specific binding to serum IgE of affected horses. Therefore, the putative complete open reading frames derived from BLAST analyses were isolated by RACE-PCR and subcloned into expression vectors. The full length proteins expressed in Escherichia coli showed molecular masses in the range of 15.5-68.7 kDa in SDS-PAGE in good agreement with the masses calculated from the predicted protein sequences. Western blot analyses of all recombinant allergens with a serum pool of IBH-affected horses showed their ability to specifically bind serum IgE of sensitized horses, and ELISA determinations yielded individual horse recognition patterns with a frequency of sensitization ranging from 13 to 57%, depending on the allergen tested. The in vivo relevance of eight of the recombinant allergens was demonstrated in intradermal skin testing. For the two characterized allergens Cul n 6 and Cul n 11, sensitized horses were not available for intradermal tests. Control horses without clinical signs of IBH did not develop any relevant immediate hypersensitivity reactions to the recombinant allergens. The major contribution of this study was to provide a repertoire of recombinant salivary gland allergens repertoire from C. nubeculosus potentially involved in the pathogenesis of IBH as a starting basis for the development of a component-resolved serologic diagnosis of IBH and, perhaps, for the development of single horse tailored specific immunotherapy depending on their component-resolved sensitization patterns.
Resumo:
Insect bite hypersensitivity (IBH) is an IgE-mediated seasonal dermatitis of the horses associated with bites of Simulium (black fly) and Culicoides (midge) species. Although cross-reactivity between Simulium and Culicoides salivary gland extracts has been demonstrated, the molecular nature of the allergens responsible for the observed cross-reactivity remains to be elucidated. In this report we demonstrate for the first time in veterinary medicine that a homologous allergen, present in the salivary glands of both insects, shows extended IgE cross-reactivity in vitro and in vivo. The cDNA sequences coding for both antigen 5 like allergens termed Sim v 1 and Cul n 1 were amplified by PCR, subcloned in high level expression vectors, and produced as [His](6)-tagged proteins in Escherichia coli. The highly pure recombinant proteins were used to investigate the prevalence of sensitization in IBH-affected horses by ELISA and their cross-reactive nature by Western blot analyses, inhibition ELISA and intradermal skin tests (IDT). The prevalence of sensitization to Sim v 1 and Cul n 1 among 48 IBH-affected horses was 37% and 35%, respectively. In contrast, serum IgE levels to both allergens in 24 unaffected horses did not show any value above background. Both proteins strongly bound serum IgE from IBH-affected horses in Western blot analyses, demonstrating the allergenic nature of the recombinant proteins. Extended inhibition ELISA experiments clearly showed that Sim v 1 in fluid phase is able to strongly inhibit binding of serum IgE to solid phase coated Cul n 1 in a concentration dependent manner and vice versa. This crucial experiment shows that the allergens share common IgE-binding epitopes. IDT with Sim v 1 and Cul n 1 showed clear immediate and late phase reactions to the allergen challenges IBH-affected horses, whereas unaffected control horses do not develop relevant immediate hypersensitivity reactions. In some horses, however, mild late phase reactions were observed 4h post-challenge, a phenomenon reported to occur also in challenge experiments with Simulium and Culicoides crude extracts probably related to lipopolysaccaride contaminations which are also present in E. coli-expressed recombinant proteins. In conclusion our data demonstrate that IgE-mediated cross-reactivity to homologous allergens, a well-known clinically relevant phenomenon in human allergy, also occurs in veterinary allergy.
Resumo:
Prediction of clinical outcome in cancer is usually achieved by histopathological evaluation of tissue samples obtained during surgical resection of the primary tumor. Traditional tumor staging (AJCC/UICC-TNM classification) summarizes data on tumor burden (T), presence of cancer cells in draining and regional lymph nodes (N) and evidence for metastases (M). However, it is now recognized that clinical outcome can significantly vary among patients within the same stage. The current classification provides limited prognostic information, and does not predict response to therapy. Recent literature has alluded to the importance of the host immune system in controlling tumor progression. Thus, evidence supports the notion to include immunological biomarkers, implemented as a tool for the prediction of prognosis and response to therapy. Accumulating data, collected from large cohorts of human cancers, has demonstrated the impact of immune-classification, which has a prognostic value that may add to the significance of the AJCC/UICC TNM-classification. It is therefore imperative to begin to incorporate the 'Immunoscore' into traditional classification, thus providing an essential prognostic and potentially predictive tool. Introduction of this parameter as a biomarker to classify cancers, as part of routine diagnostic and prognostic assessment of tumors, will facilitate clinical decision-making including rational stratification of patient treatment. Equally, the inherent complexity of quantitative immunohistochemistry, in conjunction with protocol variation across laboratories, analysis of different immune cell types, inconsistent region selection criteria, and variable ways to quantify immune infiltration, all underline the urgent requirement to reach assay harmonization. In an effort to promote the Immunoscore in routine clinical settings, an international task force was initiated. This review represents a follow-up of the announcement of this initiative, and of the J Transl Med. editorial from January 2012. Immunophenotyping of tumors may provide crucial novel prognostic information. The results of this international validation may result in the implementation of the Immunoscore as a new component for the classification of cancer, designated TNM-I (TNM-Immune).
Resumo:
OBJECTIVES: To evaluate and compare long-term functional outcome after partial carpal arthrodesis and pancarpal arthrodesis in dogs using kinetic gait analysis. METHODS: Fourteen dogs with 19 partial carpal or pancarpal arthrodeses were retrospectively examined and underwent force-plate gait analysis. Mean times since surgery were 29.4 and 24.4 months for pancarpal and partial carpal arthrodesis respectively. Vertical and braking-propulsive ground reaction force profiles were compared between treatment groups, and to those of normal dogs (control group) using Kruskal-Wallis one-way analysis of variance. RESULTS: With the exception of time to vertical peak that occurred earlier in dogs with pancarpal than in dogs with partial carpal arthrodesis (p <0.01), there was no difference between the two treatment groups. Several parameters differed significantly between operated and healthy dogs (p <0.01): vertical impulses were significantly lower in both treatment groups, braking forces and impulses were also reduced after both techniques. Propulsive forces and impulses were only reduced in dogs with pancarpal arthrodesis. When comparing gait parameters of sound limbs of unilateral operated dogs to those of control dogs, braking forces and impulses (p <0.01; p <0.05) were significantly higher in the sound legs of unilateral operated dogs. CLINICAL SIGNIFICANCE: Long-term outcome after partial carpal and pancarpal arthrodesis is good and comparable to each other. Propulsive action may be altered more in dogs with pancarpal arthrodesis.
Resumo:
Fundamental biological processes such as cell-cell communication, signal transduction, molecular transport and energy conversion are performed by membrane proteins. These important proteins are studied best in their native environment, the lipid bilayer. The atomic force microscope (AFM) is the instrument of choice to determine the native surface structure, supramolecular organization, conformational changes and dynamics of membrane-embedded proteins under near-physiological conditions. In addition, membrane proteins are imaged at subnanometer resolution and at the single molecule level with the AFM. This review highlights the major advances and results achieved on reconstituted membrane proteins and native membranes as well as the recent developments of the AFM for imaging.
Resumo:
The supramolecular assembly of amphiphilic oligopyrenotide building blocks (covalently linked heptapyrene, Py7) is studied by atomic force microscopy (AFM) in combination with optical spectroscopy. The assembly process is triggered in a controlled manner by increasing the ionic strength of the aqueous oligomer solution. Cooperative noncovalent interactions between individual oligomeric units lead to the formation of DNA-like supramolecular polymers. We also show that the terminal attachment of a single cytidine nucleotide to the heptapyrenotide (Py7-C) changes the association process from a cooperative (nucleation−elongation) to a noncooperative (isodesmic) regime, suggesting a structure misfit between the cytidine and the pyrene units. We also demonstrate that AFM enables the identification and characterization of minute concentrations of the supramolecular products, which was not accessible by conventional optical spectroscopy.
Resumo:
More than 250,000 hip fractures occur annually in the United States and the most common fracture location is the femoral neck, the weakest region of the femur. Hip fixation surgery is conducted to repair hip fractures by using a Kirschner (K-) wire as a temporary guide for permanent bone screws. Variation has been observed in the force required to extract the K-wire from the femoral head during surgery. It is hypothesized that a relationship exists between the K-wire pullout force and the bone quality at the site of extraction. Currently, bone mineral density (BMD) is used as a predictor for bone quality and strength. However, BMD characterizes the entire skeletal system and does not account for localized bone quality and factors such as lifestyle, nutrition, and drug use. A patient’s BMD may not accurately describe the quality of bone at the site of fracture. This study aims to investigate a correlation between the force required to extract a K-wire from femoral head specimens and the quality of bone. A procedure to measure K-wire pullout force was developed and tested with pig femoral head specimens. The procedure was implemented on 8 human osteoarthritic femoral head specimens and the average pullout force for each ranged from 563.32 ± 240.38 N to 1041.01 ± 346.84 N. The data exhibited significant variation within and between each specimen and no statistically significant relationships were determined between pullout force and patient age, weight, height, BMI, inorganic to organic matter ratio, and BMD. A new testing fixture was designed and manufactured to merge the clinical and research environments by enabling the physician to extract the K-wire from each bone specimen himself. The new device allows the physician to gather tactile feedback on the relative ease of extraction while load history is recorded similar to the previous procedure for data acquisition. Future work will include testing human bones with the new device to further investigate correlations for predicting bone quality.
Resumo:
Atmospheric aerosols affect both global and regional climate by altering the radiative balance of the atmosphere and acting as cloud condensation nuclei. Despite an increased focus on the research of atmospheric aerosols due to concerns about global climate change, current methods to observe the morphology of aerosols and to measure their hygroscopic properties are limited in various ways by experimental procedure. The primary objectives of this thesis were to use atomic force microscopy to determine the morphology of atmospherically relevant aerosols and to investigate theutility of environmental atomic force microscopy for imaging aerosols as they respond to changes in relative humidity. Traditional aerosol generation and collection techniques were used in conjunction with atomic force microscopy to image commonorganic and inorganic aerosols. In addition, environmental AFM was used to image aerosols at a variety of relative humidity values. The results of this research demonstrated the utility of atomic force microscopy for measuring the morphology of aerosols. In addition, the utility of environmental AFM for measuring the hygroscopic properties of aerosols was demonstrated. Further research in this area will lead to an increased understanding of the role oforganic and inorganic aerosols in the atmosphere, allowing for the effects of anthropogenic aerosol emissions to be quantified and for more accurate climate models to be developed.
Resumo:
The American Psychological Association Board of Directors established an ad hoc task force on psychopharmacology to explore the desirability and feasibility of psychopharmacology prescription privileges for psychologists. In this context, the Task Force's charges were to determine the competence criteria necessary for training psychologists to provide service to patients receiving medications and to develop and evaluate the necessary curricular models. This article summarizes the Task Force's major recommendations and provides specific information regarding its training recommendations . It is hoped that this article will encourage broad discussion of psychology's most appropriate integration of psychopharmacology knowledge and its applications into its training programs and professional activities.