989 resultados para Biology, Virology|Health Sciences, Epidemiology
Resumo:
The BCR-ABL fusion gene is the molecular hallmark of Philadelphia-positive leukemias. Normal Bcr is a multifunctional protein, originally localized to the cytoplasm. It has serine kinase activity and has been implicated in cellular signal transduction. Recently, it has been reported that Bcr can interact with xeroderma pigmentosum group B (XPB/ERCC3)—a nuclear protein active in UV-induced DNA repair. Two major Bcr proteins (p160 Bcr and p130Bcr) have been characterized, and our preliminary results using metabolic labeling and immunoblotting demonstrated that, while both the p160 and p130 forms of Bcr localized to the cytoplasm, the p130 form (and to a lesser extent p160) could also be found in the nucleus. Furthermore, electron microscopy confirmed the presence of Bcr in the nucleus and demonstrated that this protein associates with metaphase chromatin as well as condensed interphase heterochromatin. Since serine kinases that associate with condensed DNA are often cell cycle regulatory, these observations suggested a novel role for nuclear Bcr in cell cycle regulation and/or DNA repair. However, cell cycle synchronization analysis did not demonstrate changes in levels of Bcr throughout the cell cycle. Therefore we hypothesized that BCR serves as a DNA repair gene, and its function is altered by formation of BCR-ABL. This hypothesis was investigated using cell lines stably transfected with the BCR-ABL gene, and their parental counterparts (MBA-1 vs. M07E and Bcr-AblT1 vs. 4A2+pZAP), and several DNA repair assays: the Comet assay, a radioinimunoassay for UV-induced cyclobutane pyrimidine dimers (CPDs), and clonogenic assays. Comet assays demonstrated that, after exposure to either ultraviolet (UV)-C (0.5 to 10.0 joules m −2) or to gamma radiation (200–1000 rads) there was greater efficiency of DNA repair in the BCR-ABL-transfected cells compared to their parental controls. Furthermore, after UVC-irradiation, there was less production of CPDs, and a more rapid disappearance of these adducts in BCR-ABL-bearing cells. UV survival, as reflected by clonogenic assays, was also greater in the BCR-ABL-transfected cells. Taken together, these results indicate that, in our systems, BCR-ABL confers resistance to UVC-induced damage in cells, and increases DNA repair efficiency in response to both UVC- and gamma-irradiation. ^
Resumo:
Normal development and tissue homeostasis requires the carefully orchestrated balance between cell proliferation and cell death. Cell cycle checkpoints control the extent of cell proliferation. Cell death is coordinated through the activation of a cell suicide pathway that results in the morphologically recognizable form of death, apoptosis. Tumorigenesis requires that the balance between these two pathways be disrupted. The tumor suppressor protein Rb has not only been shown to be involved in the enforcement of cell cycle checkpoints, but has also been implicated in playing a role in the regulation of apoptosis. The manner in which Rb enforces cell cycle checkpoints has been well studied; however, its involvement in the regulation of apoptosis is still very unclear. p84N5 is a novel nuclear death domain containing protein that has been shown to interact with the N-terminus of Rb. The fact that it contains a death domain and the fact that it is nuclear localized possibly provides the first known mechanism for apoptotic signaling from the nucleus. The following study tested the hypothesis that the novel exclusively nuclear death domain containing protein p84N5 is an important mediator of programmed cell death and that its apoptotic function is reliant upon its nuclear localization and is regulated by unique functional domains within the p84N5 protein. We identified the p84N5 nuclear localization signal (NLS), eliminated it, and tested the functional significance of nuclear localization by using wild type and mutant sequences fused to EGFP-C1 (Clontech) to create wild type GFPN5 and subsequent mutants. The results of these assays demonstrated exclusive nuclear localization of GFPN5 is required for normal p84N5 induced apoptosis. We further conducted large-scale mutagenesis of the GFPN5 construct to identify a minimal region within p84N5 capable of interacting with Rb. We were able to identify a minimal sequence containing p84N5 amino acids 318 to 464 that was capable of interacting with Rb in co-immunoprecipitation assays. We continued by conducting a structural and functional analysis to identify the region or regions within p84N5 responsible for inducing apoptosis. Point mutations and small-scale deletions within the death domain of p84N5 lessened the effect but did not eliminate p84N5-induced cytotoxicity. Further analysis revealed that the minimal sequence of 318 to 464 of p84N5 was capable of inducing apoptosis to a similar degree as wild-type GFPN5 protein. Since amino acids 318 to 464 of p84N5 are capable of inducing apoptosis and interacting with Rb, we propose possible mechanisms whereby p84N5 may function in a Rb regulated manner. These results demonstrate that p84N5 induced apoptosis is reliant upon its nuclear localization and is regulated by unique functional domains within the p84N5 protein. ^
Resumo:
Ras proteins (H-, N-, K4A-, and K4B) are associated with cellular resistance to ionizing radiation (IR) and, consequently, may provide a potential target for radiosensitization strategies in cancer treatment. Several approaches have been used to compromise Ras activity and enhance IR-induced cell killing; however, these techniques either target proteins in addition to Ras or only target one member of the Ras family. In this study, I have used an adenovirus (AV1Y28) that expresses a single-chain antibody fragment directed against Ras proteins to investigate the mechanism(s) responsible for Ras-mediated radiation resistance. AV1Y28 enhanced the radiosensitivity of a number of human tumor cell lines without affecting the radiosensitivity of normal human fibroblasts. Whereas AV1Y28-mediated sensitization was independent of ras gene mutational status, it was dependent on active Ras proteins suggesting that AV1Y28 may be useful against a broad range of tumors. AV1Y28-mediated cell killing was not the result of redistributing cells into a more radiosensitive phase of the cell cycle and did not enhance IR-induced apoptosis. Given that Ras proteins transduce environmental signals to the nucleus, the effect of AV1Y28 on the IR-inducible transcription factor NF-κB were determined. Although AV1Y28 inhibited IR-induced NF-κB through the suppression of IKK, additional work established that NF-κB did not play a role in AV1Y28-mediated radiosensitization. However, a novel component of the signaling pathway responsible for IR-induced NF-κB was identified. Previous studies had suggested a relationship between mutant ras genes and IR-induced G2 delay; therefore the effects of AV1Y28 on the progression of cells from G2 to M after IR were determined. Pretreatment of cells with AV1Y28 prevented the IR-induced G2 arrest. AV1Y28-mediated abrogation of IR-induced G2 arrest correlated with those cell line lines that were sensitized by AV1Y28. Moreover, a significant increase in cells undergoing mitotic catastrophe was found after IR in AV1Y28 treated cells. The abrogation of G2 arrest by AV1Y28 was the result of maintaining the active form of cdc2, an inducer of mitosis, after exposure to IR. This study identified the mechanism of AV1Y28-mediated radiosensitization and has provided insight into the signal transduction pathways responsible for Ras-mediated radiation resistance. ^
Resumo:
Tissue transglutaminase (tTGase) is an enzyme that catalyzes the posttranslational modification of proteins via Ca2+-dependent cross-linking reactions. In this study, we extended our earlier observation that tTGase is highly expressed in MCF-7 human breast carcinoma cells selected for the multidrug resistance phenotype (MCF-7/DOX). To directly assess the involvement of tTGase in drug resistance, parental MCF-7 (MCF-7/WT) cells were transfected with cDNAs encoding either a catalytically active (wildtype) or inactive (mutant) tTGase protein. Expression of wildtype tTGase led to spontaneous apoptosis in MCF-7/WT cells, while the mutant tTGase was tolerated by the cells but did not confer resistance to doxorubicin. Analysis of calcium by a spectrofluorometric technique revealed that MCF-7/DOX cells exhibit a defective mechanism in intracellular calcium mobilization, which may play a role in preventing the in situ activation of tTGase and thus allowing the cells to grow despite expressing this enzyme. An elevation in intracellular calcium by treatment with the calcium ionophore A23187 induced rapid and substantial apoptosis in MCF-7/DOX cells as determined by morphological and biochemical criteria. Pretreatment of MCF-7/DOX cells with a tTGase-specific inhibitor (monodansylcadaverine) suppressed A12387-induced apoptosis, suggesting the possible involvement of tTGase-catalyzed protein cross-linking activity. A23187-induced apoptosis in MCF-7/DOX cells was further characterized by PARP cleavage and activation of downstream caspases (-3, -6, and -7). Another interesting aspect of tTGase/A23187-induced apoptosis in MCF-7/DOX cells was that these cells failed to show any prototypic changes associated with the mitochondrial (altered membrane potential, cytochrome c release, caspase-9 activation), receptor-induced (Bid cleavage), or endoplasmic reticulum-stressed (caspase-12 activation) apoptotic pathways. In summary, our data demonstrate that, despite being highly resistant to conventional chemotherapeutic drugs, MCF-7/DOX cells are highly sensitive to apoptosis induced by increased intracellular calcium. We conclude that tTGase does not play a direct role in doxorubicin resistance in MCF-7/DOX cells, but may play a role in enhancing the sensitivity of these cells to undergo apoptosis. ^
Resumo:
A Western Array Screening system in conjunction with an in vitro lung carcinogenesis model, which consists of human bronchial epithelial (HBE) cells representing normal (NHBE), immortalized (BEAS-2B and 1799), transformed (1198), and tumorigenic (1170-I) was used to test the hypothesis that lung carcinogenesis involves specific changes in signaling proteins. Forty six proteins whose expression was upregulated by >2 fold and 23 proteins whose expression was downregulated by >2 fold in 1170-I compared to NHBE cells were identified. The levels of six proteins including bFGF (both intracellular and secreted), Akt and p70s6K in the PI3KJp70s6K pathway and the bFGF receptor (FGFR1) were upregulated in different stages of lung carcinogenesis. Akt activity and phospho-p70s6K were also increased in 1170-I compared to NHBE cells, suggesting that PI3K/p70s6K pathway is activated during lung carcinogenesis. bFGF treatment stimulated the growth of the 1170-I cells. Both tyrosine phosphorylation of FGFR1 and cell growth were inhibited in 1170-I cells after overexpression of dominant-negative(DN) FGFR1. Growth inhibition involved a G2 arrest related to decreased cdc2 activity, cdc25C downregulation, Wee1, p21(WAF1) and p27(Kip1) upregulation. Apoptosis was observed in tumorigenic but not in normal cells after overexpression of DNFGFR1. Confluent NHBE cells, were much less sensitive to the growth inhibition by DNFGFR1 compared to other cell lines analyzed. bFGF increased phospho-Akt and phospho-p70s6K in 1170-I cells. The Akt inhibitor LY294002 and the p70s6K inhibitor rapamycin inhibited bFGF-stimulated cell growth in 1170-I cells. Both agents downregulated the bFGF-induced increase in S phase by inducing G1 arrest. Also, LY294002 inhibited bFGF increased phospho-Akt, while both LY294002 and rapamycin inhibited bFGF increased phospho-p70s6K. Thus, cell proliferation stimulated by bFGF in 1170-I cells was at least partially mediated by PI3K/p70s6K pathway. Hsp90 was upregulated by bFGF in 1170-I cells. Its inhibitor geldanamycin inhibited the bFGF-stimulated growth via inducing apoptosis and G2 arrest through decreases in cdc2 expression/activity and p21 upregulation, and decreased Akt/phospho-Akt, p70s6K/phospho-p70s6K and Bad. Hsp90, p70s6K and Bad were found in the same complex, which may be important for signaling cell survival. Taken together, our study suggests that bFGF signaling, especially PI3K/p70s6K pathway, is important for lung carcinogenesis. ^
Resumo:
The aberrant activation of signal transduction pathways has long been linked to uncontrolled cell proliferation and the development of cancer. The activity of one such signaling module, the Mitogen-Activated Protein Kinase (MAPK) pathway, has been implicated in several cancer types including pancreatic, breast, colon, and lymphoid malignancies. Interestingly, the activation of MAP-Kinase-Kinase-Kinase proteins often leads to the additional activation of NF-κB, a transcription factor that acts as a cell survival signal through its control of antiapoptotic genes. We have investigated the role of a specific dimer form of the NF-κB transcription factor family, NF-κB1 (p50) homodimers, in its control of the proto-oncogene, Bcl-2, and we have identified the MEK/ERK (MAPK) signaling cascade as a mediator of NF-κB1 activity. ^ Two murine B cell lymphoma cell lines were used for these studies: LY-as, an apoptosis proficient line with low Bcl-2 protein expression and no nuclear NF-κB activity, and LY-ar, a nonapoptotic line with constitutive p50 homodimer activity and 30 times more Bcl-2 protein expression than LY-as. Experiments modulating p50 activity correlated the activation of p50 homodimers with Bcl-2 expression and additional gel shift experiments demonstrated that the Bcl-2 P1 promoter had NF-κB sites with which recombinant p50 was able to interact. In vitro transcription revealed that p50 enhanced the production of transcripts derived from the Bcl-2 P1 promoter. These data strongly suggest that Bcl-2 is a target gene for p50-mediated transcription and suggest that the activation of p50 homodimers contributes to the expression of Bcl-2 observed in LY-ar cells. ^ Studies of upstream MAPK pathways that could influence NF-κB activity demonstrated that LY-ar cells had phosphorylated ERK proteins while LY-as cells did not. Treatment of LY-ar cells with the MEK inhibitors PD 98059, U0126, and PD 184352 led to a loss of phosphorylated ERK, a reversal of nuclear p50 homodimer DNA binding, and a decrease in the amount of Bcl-2 protein expression. Similarly, the activation of the MEK/ERK pathway in LY-as cells by phorbol ester led to Bcl-2 expression that could be blocked by PD 98059. Furthermore, treatment of LY-ar cells with TNFα, an IKK activator, did not change the suppressive effect of PD 98059 on p50 homodimer activity, suggesting an IKK-independent pathway for p50 homodimer activation. Lastly, all three MEK inhibitors sensitized LY-ar cells to radiation-induced apoptosis. ^ These data indicate that the activation of the MEK/ERK MAP-Kinase signaling pathway acts upstream of p50 homodimer activation and Bcl-2 expression in this B cell lymphoma cell system and suggest that the activation of MEK/ERK may be a key step in the progression of lymphoma to advanced-staged disease. Other researchers have used MEK inhibitors to inhibit cell growth and sensitize a number of tumors to chemotherapies. In light of our data, MEK inhibitors may additionally be useful clinically to radiosensitize cancers of lymphoid origin. ^
Resumo:
Microsatellite instability (MSI) is a hallmark of the mutator phenotype associated with Hereditary Non-Polyposis Colon Cancer (HNPCC). The MSI-High (MSI-H) HNPCC population has been well characterized, but the microsatellite low and stable (MSI-L/MSS) HNPCC population is much less understood. We hypothesize there are significant levels of MSI in HNPCC DNA classified as MSI-L/MSS, but no single variant allele makes up a sufficient population in the tumor DNA to be detected by standard analysis. Finding variants would suggest there is a mutator phenotype for the MSI-L/MSS HNPCC population that is distinct from the MSI-H HNPCC populations. This study quantified and compared MSI in HNPCC patients previously shown to be MSI-H, MSI-L/MSS and an MSI-H older, sporadic colorectal cancer patient. Small-pool Polymerase Chain Reactions (SP-PCRs) were conducted where the DNAs from each sample and controls are diluted into multiple pools, each containing approximately single genome equivalents. At least 100 alleles/sample were studied at six microsatellite loci. Mutant fragments were identified, quantified, and compared using Poisson statistics. Most of the variants were small deletions or insertions, with more mutants being deletions, as has been previously described in yeast and transgenic mice. SP-PCR, where most of the pools contained only 3 or less fragments, enabled identification of variants too infrequent to be detected by large pool PCR. Mutant fragments in positive control MSI-H tumor samples ranged from 0.26 to 0.68 in at least 4 of the 6 loci tested and were consistent with their MSI-H status. In the so called MSS tumors and constitutive tissues (normal colon tissue, and PBLs) of all the HNPCC patients, low, but significant levels of MSI were seen in at least two of the loci studied. This phenomenon was not seen in the sporadic MSI constitutive tissues nor the normal controls and suggests haploinsufficiency, gain-of-function, or a dominant/negative basis of the instability in HNPCC patients carrying germline mutations for tumor suppressor genes. A different frequency and spectrum of mutant fragments suggests a different genetic basis (other than a major mutation in MLH1 or MSH2) for disease in MSI-L and MSS HNPCC patients. ^
Resumo:
YKL-40 is a secreted glycoprotein that has been reported to be expressed in pathologic conditions of extracellular matrix degradation and angiogenesis, such as rheumatoid arthritis, severe osteoarthritis, primary colorectal cancer, metastatic breast cancer, and recurrent ovarian cancer (Dehn, Hogdall et al. 2003). ^ We have identified YKL-40 as a serum marker for glioblastoma multiforme (GBM) using microarray analysis from samples of GBM. We compared the gene expression profile of 19 gliomas to pooled normal brain tissue using the Incyte 10,000 gene expression array. The most differentially expressed gene in this analysis was YKL-40; it was detected in GBM samples with a range of 3 to 62-fold elevation over normal brain. Western blot analysis of glioma samples for YKL-40 protein levels revealed substantial elevation in approximately 65% of GBMs, and undetectable levels in lower-grade gliomas and normal brain tissue. ELISA analysis on serum samples of glioma patients showed that YKL-40 levels were substantially elevated in many of the GBM patients. Statistical analysis indicated that in patients with glioma, serum YKL-40 levels correlate with tumor grade and potentially tumor burden in GBM. ^ Furthermore, we found that YKL-40 expression by in-situ hybridization on a brain tumor tissue array was limited to GBM's and gliosarcomas (GSA), and that YKL-40 expression was specific to the GBM component of GSA. Additional in-situ hybridization analysis, found it to be regionally associated with tumor vasculature as well as activated AKT expression in both human and mouse GBM's. Correlation of elevated YKL-40 with phospho-AKT was confirmed by Western blot analysis on a series of glioblastoma tumors, and inhibition of PI3 Kinase signaling by addition of LY294002 also decreased secretion of YKL-40 over a 7-day period in U87 glioblastoma cell tine. Lastly, YKL-40 expression was induced in response to serum starvation and altered by interaction with specific extracellular matrix (ECM) modules. In summary, we have identified the first accurate serum marker for high-grade gliomas. Furthermore, our findings indicate that YKL-40 is a highly expressed vascular-related glycoprotein in human GBM tissue and that it is affected by the AKT signaling pathway and interaction with components of brain ECM proteins. ^
Resumo:
Many statistical studies feature data with both exact-time and interval-censored events. While a number of methods currently exist to handle interval-censored events and multivariate exact-time events separately, few techniques exist to deal with their combination. This thesis develops a theoretical framework for analyzing a multivariate endpoint comprised of a single interval-censored event plus an arbitrary number of exact-time events. The approach fuses the exact-time events, modeled using the marginal method of Wei, Lin, and Weissfeld, with a piecewise-exponential interval-censored component. The resulting model incorporates more of the information in the data and also removes some of the biases associated with the exclusion of interval-censored events. A simulation study demonstrates that our approach produces reliable estimates for the model parameters and their variance-covariance matrix. As a real-world data example, we apply this technique to the Systolic Hypertension in the Elderly Program (SHEP) clinical trial, which features three correlated events: clinical non-fatal myocardial infarction, fatal myocardial infarction (two exact-time events), and silent myocardial infarction (one interval-censored event). ^
Resumo:
The p53 tumor suppressor protein plays a major role in cellular responses to anticancer agents that target DNA. DNA damage triggers the accumulation of p53, resulting in the transactivation of genes, which induce cell cycle arrest to allow for repair of the damaged DNA, or signal apoptosis. The exact role that p53 plays in sensing DNA damage and the functional consequences remain to be investigated. The main goal of this project was to determine if p53 is directly involved in sensing DNA damage induced by anticancer agents and in mediating down-stream cellular responses. This was tested in two experimental models of DNA damage: (1) DNA strand termination caused by anticancer nucleoside analogs and (2) oxidative DNA damage induced by reactive oxygen species (ROS). Mobility shift assays demonstrated that p53 and DNA-PK/Ku form a complex that binds DNA containing the anticancer nucleoside analog gemcitabine monophosphate in vitro. Binding of the p53-DNA-PK/Ku complex to the analog-containing DNA inhibited DNA strand elongation. Furthermore, treatment of cells with gemcitabine resulted in the induction of apoptosis, which was associated with the accumulation of p53 protein, its phosphorylation, and nuclear localization, suggesting the activation of p53 to trigger apoptosis following gemcitabine induced DNA strand termination. The role of p53 as a DNA damage sensor was further demonstrated in response to oxidative DNA damage. Protein pull-down assays demonstrated that p53 complexes with OGG1 and APE, and binds DNA containing the oxidized DNA base 8-oxoG. Importantly, p53 enhances the activities of APE and OGG1 in excising the 8-oxoG residue as shown by functional assays in vitro. This correlated with the more rapid removal of 8-oxoG from DNA in intact cells with wild-type p53 exposed to exogenous ROS stress. Interestingly, persistent exposure to ROS resulted in the accelerated onset of apoptosis in cells with wild-type p53 when compared to isogenic cells lacking p53. Apoptosis in p53+/+ cells was associated with accumulation and phosphorylation of p53 and its nuclear localization. Taken together, these results indicate that p53 plays a key role in sensing DNA damage induced by anticancer nucleoside analogs and ROS, and in triggering down-stream apoptotic responses. This study provides new mechanistic insights into the functions of p53 in cellular responses to anticancer agents. ^
Resumo:
Non-Hodgkin's Lymphomas (NHL) are a group (>30) of important human lymphoid cancers that unlike other tumors today, are showing a marked increase in incidence. The lack of insight to the pathogenesis of B-cell NHL poses a significant problem in the early detection and effective treatment of these malignancies. This study shows that large B-cell lymphoma (LBCL) cells, the most common type of B-cell NHL (account for more than 30% of cases), have developed a novel mechanism for autonomous neoplastic B cell growth. We have identified that the key transcription factor NF-κB, is constitutively activated in LBCL cell lines and primary biopsy-derived LBCL cells, suggesting that they are autonomously activated, and do not require accessory T-cell signaling for cell growth and survival. Further studies have indicated that LBCL cells ectopically express an important T-cell associated co-mitogenic factor, CD154 (CD40 ligand), that is able to internally activate the CD401NF-κB pathway, through constitutive binding to its cognate receptor, CD40, on the lymphoma cell surface. CD40 activation triggers the formation of a “Signalosome” comprising virtually the entire canonical CD40/NF-κB signaling pathway that is anchored by CD40 in plasma membrane lipid rafts. The CD40 Signalosome is vulnerable to interdiction by antibody against CD40 that disrupts the Signalosome and induces cell death in the malignant cells. In addition to constitutive NF-κB activation, we have found that the nuclear factor of activated T cells (NFAT) transcription factor is also constitutively activated in LBCL cells. We have demonstrated that the constitutively active NFATc1 and c-rel members of the NFAT and NF-κB families of transcription factors, respectively, interact with each other, bind to the CD154 promoter, and synergistically activate CD154 gene transcription. Down-regulation of NFATc1 and c-rel with small interfering RNA inhibits CD154 gene transcription and lymphoma cell growth. Our findings suggest that continuous CD40 activation not only provides dysregulated proliferative stimuli for lymphoma cell growth and extended tumor cell survival, but also allows continuous regeneration of the CD40 ligand in the lymphoma cell and thereby recharges the system through a positive feedback mechanism. Targeting the CD40/NF-κB signaling pathway could provide potential therapeutic modalities for LBCL cells in the future. ^
Resumo:
ErbB2 overexpression in breast tumors increases metastasis, angiogenesis, and reduces survival. To study ErbB2 signaling mechanisms in metastasis and angiogenesis, a spontaneous metastasis assay was performed using human breast cancer cells transfected with constitutively active ErbB2 kinase (V659E), an ErbB2 kinase-dead mutant (K753M), or vector control. Mice injected with V659E had increased metastasis and tumor microvessel density; and the increased angiogenesis in vivo from the V659E transfectants paralleled increased angiogenic potential in vitro, which resulted from increased VEGF by increased protein synthesis. This appeared to be mediated through a PI3K, Akt, mTOR, p70S6K-signaling pathway. Furthermore, V659E xenografts had significantly increased phosphorylated Akt, phosphorylated p70S6K, and VEGF compared with control. To validate the clinical relevance of these findings, human breast tumor samples were examined. Tumors overexpressing ErbB2 correlated with p70S6K phosphorylation and VEGF expression, which significantly correlated with higher levels of Akt and mTOR phosphorylation. Additionally, patients with tumors having increased p70S6K phosphorylation showed a trend for worse disease-free survival and increased metastasis. Together, ErbB2 increases VEGF expression by activating the p70S6K signaling pathway, which may serve as targets for antiangiogenic and antimetastatic therapies. ^ Herceptin is an anti-ErbB2 antibody that demonstrated anti-tumor function, especially in combination with other chemotherapies such as Taxol, in patients with ErbB2-overexpressing tumors. Since the repeated administration of low-dose chemotherapy endorsed an antiangiogenic effect in vitro, and Herceptin was shown to inhibit angiogenesis in tumor xenografts, I investigated whether combined Taxol plus Herceptin treatment inhibits ErbB2-mediated angiogenic responses more effectively. Mice with ErbB2-overexpressing xenografts were treated with control, Herceptin, Taxol, or combination Herceptin plus Taxol. Mice treated with the combination exhibited reduced tumor volumes, tumor microvessel densities, and lung metastasis; and ErbB2-overexpressing cells treated with the combination secreted less VEGF, and stimulated less endothelial cell migration. Furthermore, Akt phosphorylation contributed to VEGF upregulation and was most effectively reduced by combination treatment. ^ In summary, ErbB2 activates signaling to Akt and p70S6K leading to increased VEGF and angiogenesis. Combination Herceptin plus Taxol treatment most effectively inhibited ErbB2-mediated angiogenesis, resulting in pronounced tumoricidal effects, and may be mediated through reduction of phosphorylated Akt, a positive regulator in the p70S6K pathway. ^
Resumo:
To ensure the success of systemic gene therapy, it is critical to enhance the tumor specificity and activity of the promoter. In the current study, we identified the breast cancer-specific activity of the topoisomerase IIα promoter. We further showed that cdk2 and cyclin A activate topoisomerase IIα promoter in a breast cancer-specific manner. An element containing an inverted CCAAT box (ICB) was shown to respond this signaling. When the ICB-harboring topoisomerase IIα minimal promoter was linked with an enhancer sequence from the cytomegalovirus immediate early gene promoter (CMV promoter), this composite promoter, CT90, exhibited activity comparable to or higher than the CMV promoter in breast cancer cells in vitro and in vivo, yet expresses much lower activity in normal cell lines and normal organs than the CMV promoter. A CT90-driven construct expressing BikDD, a potent pro-apoptotic gene, was shown to selectively kill breast cancer cells in vitro and to suppress mammary tumor development in an animal model of intravenously administrated, liposome-delivered gene therapy. Expression of BikDD was readily detectable in the tumors but not in the normal organs of CT90-BikDD-treated animals. Finally, we demonstrated that CT90-BikDD treatment potentially enhanced the sensitivity of breast cancer cells to chemotherapeutic agents, especially doxorubicin and taxol. The results indicate that liposomal CT90-BikDD is a novel and effective systemic breast cancer-targeting gene therapy, and its combination with chemotherapy may further improve the current adjuvant therapy for breast cancer. ^
Resumo:
Relaxin is a polypeptide hormone that has diverse effects on reproductive and non-reproductive tissues. Relaxin activates the G-protein coupled receptors, LGR7 and LRG8. Early studies described increased cAMP and protein kinase A activity upon relaxin treatment, but cAMP accumulation alone could not account for all of the relaxin-mediated effects. We utilized the human monocyte cell line THP-1 to study the mechanism of relaxin-stimulated CAMP production. ^ Relaxin treatment in THP-1 cells produces a biphasic time course in cAMP accumulation, where the first peak appears as early as 1–2 minutes with a second peak at 10–20 minutes. Selective inhibitors for phosphoinositide 3-kinase (P13K), such as wortmannin and LY294002, show a dose-dependent inhibition of relaxin-stimulated cAMP accumulation, specific for the second peak of the relaxin time course. Neither the effects of relaxin nor the inhibition of relaxin by LY294002 is mediated by the activity of phosphodiesterases. Furthermore, LY294002 blocks upregulation of vascular endothelial growth factor transcript levels by relaxin. ^ To further delineate relaxin signaling pathways, we searched for downstream targets of PI3K that could activate adenylyl cyclase (AC). Protein kinase C ζ (PKCζ) was a prime candidate because it activates types II and V AC. Chelerythrine chloride (a general PKC inhibitor) inhibits relaxin-induced cAMP production to the same degree as LY294002 (∼40%). Relaxin stimulates PKCζ translocation to the plasma membrane in THP-1, MCF-7, PHM1-31, and MMC cells, as shown by immunocytochemistry. PKCζ translocation is P13K-dependent and independent of cAMP production. Antisense PKCζ oligodeoxynucleotides (PKCζ-ODNs) deplete both PKCζ transcript and protein levels in THP-1 cells. PKCζ-ODNs abolish relaxin-mediated PKCζ translocation and inhibit relaxin stimulation of cAMP by 40%, as compared to mock and random ODN controls. Treatment with LY294002 in the presence of PKCζ-ODNs results in little further inhibition. Taken together, we present a novel role for PI3K and PKCζ in relaxin stimulation of cAMP and provide the first example of the PKCζ regulation of AC in an endogenous system. Furthermore, we have identified higher order complexes of AC isoforms and PKA anchoring proteins in attempts to explain the differential coupling of relaxin to cAMP and PI3K-signaling pathways in various cell types. ^
Resumo:
Heregulins constitute a family of growth factors belonging to the epidermal growth factor (EGF) family. Breast cancers that overexpress specific members of the EGF receptor family (EGFR, ErbB2, ErbB3, ErbB4) have increased metastatic potential, and Heregulin-β1 (HRGβ1), a ligand for ErbB3 and ErbB4, has also been shown to induce metastasis-related properties in breast cancer cells in vitro. The secreted form of the HRGβ1 is composed of five distinct structural domains, including the N-terminal domain, an immunoglobulin-like domain (IgG-like), a glycosylation domain, an EGF-like domain, and a β1-specific domain. Of these, the EGF-like domain is well characterized for its function in metastasis-related properties as well as its structure. However, the contributions of the other HRGβ1 domains in breast cancer metastasis remains unclear. ^ To investigate this, HRGβ1 proteins with targeted domain deletions were purified and subjected to assays for metastasis-related properties, including aggregation, invasion, activation of EGFR family members, and motility of breast cancer cells. These assays showed that retaining the EGF-like domain of HRGβ1 is important for activation of EGFRs. Interestingly, the HRGβ1 protein lacking the IgG-like domain (NGEB) led to a decrease in breast cancer cell motility, indicating the IgG-like domain modulates cell motility, an important step in cancer metastasis. ^ To understand the underlying mechanisms, I performed protein sequence and structural analysis of HRGβ1 and identified that the IgG-like domain of HRGβ1 shares sequence homology and three-dimensional structural similarity with the IgG-like domain of TRIO. TRIO is a cytoplasmic protein that directly associates with RhoA, a GTPase involved in cell reorganization and cell motility. Therefore, I hypothesized that HRGβ1 may translocate inside the breast cancer cells through receptor mediated endocytosis and bind to RhoA via its IgG-like domain. I show wild type HRGβ1 but not NGEB binds RhoA in vitro and in vivo, leading to RhoA activation. Inhibition of HRG-β1 internalization via endocytosis disrupted HRGβ1 binding to RhoA. Additionally, breast cancer cell motility induced by HRG-β1 is reduced after treatment with inhibitors to both endocytosis and RhoA function, similar to levels seen with NGEB treatment. ^ Thus, in addition to the well-known role of HRGβ1 as an extracellular stimulator of the EGFR family members, HRGβ1 also functions within the cell as a binding partner and activator of RhoA to modulate cancer cell motility. ^