Analysis of interval -censored events in hypertension studies: Evaluation of treatment of coronary heart disease
Data(s) |
01/01/2001
|
---|---|
Resumo |
Many statistical studies feature data with both exact-time and interval-censored events. While a number of methods currently exist to handle interval-censored events and multivariate exact-time events separately, few techniques exist to deal with their combination. This thesis develops a theoretical framework for analyzing a multivariate endpoint comprised of a single interval-censored event plus an arbitrary number of exact-time events. The approach fuses the exact-time events, modeled using the marginal method of Wei, Lin, and Weissfeld, with a piecewise-exponential interval-censored component. The resulting model incorporates more of the information in the data and also removes some of the biases associated with the exclusion of interval-censored events. A simulation study demonstrates that our approach produces reliable estimates for the model parameters and their variance-covariance matrix. As a real-world data example, we apply this technique to the Systolic Hypertension in the Elderly Program (SHEP) clinical trial, which features three correlated events: clinical non-fatal myocardial infarction, fatal myocardial infarction (two exact-time events), and silent myocardial infarction (one interval-censored event). ^ |
Identificador |
http://digitalcommons.library.tmc.edu/dissertations/AAI3102474 |
Idioma(s) |
EN |
Publicador |
DigitalCommons@The Texas Medical Center |
Fonte |
Texas Medical Center Dissertations (via ProQuest) |
Palavras-Chave | #Biology, Biostatistics|Health Sciences, Public Health |
Tipo |
text |