801 resultados para Binary prediction
Resumo:
Let G be any of the (binary) icosahedral, generalized octahedral (tetrahedral) groups or their quotients by the center. We calculate the automorphism group Aut(G).
Resumo:
In the present work, binary-Lie, assocyclic, and binary (-1,1) algebras are studied. We prove that, for every assocyclic algebra A, the algebra A(-) is binary-Lie. We find a simple non-Malcev binary-Lie superalgebra T that cannot be embedded in A(-s) for an assocyclic superalgebra A. We use the Grassmann envelope of T to prove the similar result for algebras. This solve negatively a problem by Filippov (see [1, Problem 2.108]). Finally, we prove that the superalgebra T is isomorphic to the commutator superalgebra A(-s) for a simple binary (-1,1) superalgebra A.
Resumo:
The objective of this article is to find out the influence of the parameters of the ARIMA-GARCH models in the prediction of artificial neural networks (ANN) of the feed forward type, trained with the Levenberg-Marquardt algorithm, through Monte Carlo simulations. The paper presents a study of the relationship between ANN performance and ARIMA-GARCH model parameters, i.e. the fact that depending on the stationarity and other parameters of the time series, the ANN structure should be selected differently. Neural networks have been widely used to predict time series and their capacity for dealing with non-linearities is a normally outstanding advantage. However, the values of the parameters of the models of generalized autoregressive conditional heteroscedasticity have an influence on ANN prediction performance. The combination of the values of the GARCH parameters with the ARIMA autoregressive terms also implies in ANN performance variation. Combining the parameters of the ARIMA-GARCH models and changing the ANN`s topologies, we used the Theil inequality coefficient to measure the prediction of the feed forward ANN.
Resumo:
The purpose of this work is to verify the stability of the relationship between real activity and interest rate spread. The test is based on Chen (1988) and Osorio and Galea (2006). The analysis is applied to Chile and the United States, from 1980 to 1999. In general, in both cases the relationship was statistically significant in early 80s, but a break point is found in both countries during that decades, suggesting that the relationship depends on the monetary rule follow by the Central Bank.
Resumo:
In the present work, a new approach for the determination of the partition coefficient in different interfaces based on the density function theory is proposed. Our results for log P(ow) considering a n-octanol/water interface for a large super cell for acetone -0.30 (-0.24) and methane 0.95 (0.78) are comparable with the experimental data given in parenthesis. We believe that these differences are mainly related to the absence of van der Walls interactions and the limited number of molecules considered in the super cell. The numerical deviations are smaller than that observed for interpolation based tools. As the proposed model is parameter free, it is not limited to the n-octanol/water interface.
Resumo:
A correlation between the physicochemical properties of mono- [Li(I), K(I), Na(I)] and divalent [Cd(II), Cu(II), Mn(II), Ni(II), Co(II), Zn(II), Mg(II), Ca(II)] metal cations and their toxicity (evaluated by the free ion median effective concentration. EC50(F)) to the naturally bioluminescent fungus Gerronema viridilucens has been studied using the quantitative ion character activity relationship (QICAR) approach. Among the 11 ionic parameters used in the current study, a univariate model based on the covalent index (X(m)(2)r) proved to be the most adequate for prediction of fungal metal toxicity evaluated by the logarithm of free ion median effective concentration (log EC50(F)): log EC50(F) = 4.243 (+/-0.243) -1.268 (+/-0.125).X(m)(2)r (adj-R(2) = 0.9113, Alkaike information criterion [AIC] = 60.42). Additional two- and three-variable models were also tested and proved less suitable to fit the experimental data. These results indicate that covalent bonding is a good indicator of metal inherent toxicity to bioluminescent fungi. Furthermore, the toxicity of additional metal ions [Ag(I), Cs(I), Sr(II), Ba(II), Fe(II), Hg(II), and Pb(II)] to G. viridilucens was predicted, and Pb was found to be the most toxic metal to this bioluminescent fungus (EC50(F)): Pb(II) > Ag(I) > Hg(I) > Cd(II) > Cu(II) > Co(II) Ni(II) > Mn(II) > Fe(II) approximate to Zn(II) > Mg(II) approximate to Ba(II) approximate to Cs(I) > Li(I) > K(I) approximate to Na(I) approximate to Sr(II)> Ca(II). Environ. Toxicol. Chem. 2010;29:2177-2181. (C) 2010 SETAC
Resumo:
Flash points (T(FP)) of hydrocarbons are calculated from their flash point numbers, N(FP), with the relationship T(FP) (K) = 23.369N(FP)(2/3) + 20.010N(FP)(1/3) + 31.901 In turn, the N(FP) values can be predicted from experimental boiling point numbers (Y(BP)) and molecular structure with the equation N(FP) = 0.987 Y(BP) + 0.176D + 0.687T + 0.712B - 0.176 where D is the number of olefinic double bonds in the structure, T is the number of triple bonds, and B is the number of aromatic rings. For a data set consisting of 300 diverse hydrocarbons, the average absolute deviation between the literature and predicted flash points was 2.9 K.
Resumo:
A very high level of theoretical treatment (complete active space self-consistent field CASSCF/MRCI/aug-cc-pV5Z) was used to characterize the spectroscopic properties of a manifold of quartet and doublet states of the species BeP, as yet experimentally unknown. Potential energy curves for 11 electronic states were obtained, as well as the associated vibrational energy levels, and a whole set of spectroscopic constants. Dipole moment functions and vibrationally averaged dipole moments were also evaluated. Similarities and differences between BeN and BeP were analysed along with the isovalent SiB species. The molecule BeP has a X (4)Sigma(-) ground state, with an equilibrium bond distance of 2.073 angstrom, and a harmonic frequency of 516.2 cm(-1); it is followed closely by the states (2)Pi (R(e) = 2.081 angstrom, omega(e) = 639.6 cm(-1)) and (2)Sigma(-) (R(e) = 2.074 angstrom, omega(e) = 536.5 cm(-1)), at 502 and 1976 cm(-1), respectively. The other quartets investigated, A (4)Pi (R(e) = 1.991 angstrom, omega(e) = 555.3 cm(-1)) and B (4)Sigma(-) (R(e) = 2.758 angstrom, omega(e) = 292.2 cm(-1)) lie at 13 291 and 24 394 cm(-1), respectively. The remaining doublets ((2)Delta, (2)Sigma(+)(2) and (2)Pi(3)) all fall below 28 000 cm(-1). Avoided crossings between the (2)Sigma(+) states and between the (2)Pi states add an extra complexity to this manifold of states.
Resumo:
We have employed UV-vis spectroscopy in order to investigate details of the solvation of six solvatochromic indicators, hereafter designated as ""probes"", namely, 2,6-diphenyl-4-(2,4,6-triphenylpyridinium-1-yl) phenolate (RB); 4-[(E)-2-(1-methylpyridinium-4-yl)ethenyl] phenolate, MePM; 1-methylquinolinium-8-olate, QB; 2-bromo-4-[(E)-2-(1-methylpyridinium-4-yl)ethenyl] phenolate, MePMBr, 2,6-dichloro-4-(2,4,6-triphenylpyridinium-1-yl) phenolate (WB); and 2,6-dibromo-4-[(E)-2-(1-methylpyridinium-4-yl)ethenyl] phenolate, MePMBr,, respectively. These can be divided into three pairs, each includes two probes of similar pK(a) in water and different lipophilicity. Solvation has been studied in binary mixtures, BMs, of water, W, with 12 protic organic solvents, S, including mono- and bifunctional alcohols (2-alkoxyethanoles, unsaturated and chlorinated alcohols). Each medium was treated as a mixture of S, W, and a complex solvent, S-W, formed by hydrogen bonding. Values of lambda(max) (of the probe intramolecular charge transfer) were converted into empirical polarity scales, E(T)(probe) in kcal/mol, whose values were correlated with the effective mole fraction of water in the medium, chi w(effective). This correlation furnished three equilibrium constants for the exchange of solvents in the probe solvation shell; phi(W/S) (W substitutes S): phi(S-W/W) (S-W substitutes W), and phi(S-W/S) (S-W substitutes S), respectively. The values of these constants depend on the physicochemical properties of the probe and the medium. We tested, for the first time, the applicability of a new solvation free energy relationship: phi = constant + a alpha(BM) + b beta(BM) + s(pi*(BM) + d delta) + p log P(BM), where a, b, s, and p are regression coefficients alpha(BM), beta(BM), and pi*(BM) are solvatochromic parameters of the BM, delta is a correction term for pi*, and log P is an empirical scale of lipophilicity. Correlations were carried out with two-, three-, and four-medium descriptors. In all cases, three descriptors gave satisfactory correlations; use of four parameters gave only a marginal increase of the goodness of fit. For phi(W/S), the most important descriptor was found to be the lipophilicity of the medium; for phi(S-W/W) and phi(S-W/S), solvent basicity is either statistically relevant or is the most important descriptor. These responses are different from those of E(T)(probe) of many solvatochromic indicators in pure solvents, where the importance of solvent basicity is usually marginal, and can be neglected.
Resumo:
The second-order rate constants of thiolysis by n-heptanethiol on 4-nitro-N-n-butyl-1,8-naphthalimide (4NBN) are strongly affected by the water-methanol binary mixture composition reaching its maximum at around 50% mole fraction. In parallel solvent effects on 4NBN absorption molar extinction coefficient also shows a maximum at this composition region. From the spectroscopic study of reactant and product and the known H-bond capacity of the mixture a rationalization that involves specific solvent H-donor interaction with the nitro group is proposed to explain the kinetic data. Present findings also show a convenient methodology to obtain strongly fluorescent imides, valuable for peptide and analogs labeling as well as for thio-naphthalimide derivatives preparations. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
The main purpose of this thesis project is to prediction of symptom severity and cause in data from test battery of the Parkinson’s disease patient, which is based on data mining. The collection of the data is from test battery on a hand in computer. We use the Chi-Square method and check which variables are important and which are not important. Then we apply different data mining techniques on our normalize data and check which technique or method gives good results.The implementation of this thesis is in WEKA. We normalize our data and then apply different methods on this data. The methods which we used are Naïve Bayes, CART and KNN. We draw the Bland Altman and Spearman’s Correlation for checking the final results and prediction of data. The Bland Altman tells how the percentage of our confident level in this data is correct and Spearman’s Correlation tells us our relationship is strong. On the basis of results and analysis we see all three methods give nearly same results. But if we see our CART (J48 Decision Tree) it gives good result of under predicted and over predicted values that’s lies between -2 to +2. The correlation between the Actual and Predicted values is 0,794in CART. Cause gives the better percentage classification result then disability because it can use two classes.
Resumo:
This paper presents the techniques of likelihood prediction for the generalized linear mixed models. Methods of likelihood prediction is explained through a series of examples; from a classical one to more complicated ones. The examples show, in simple cases, that the likelihood prediction (LP) coincides with already known best frequentist practice such as the best linear unbiased predictor. The paper outlines a way to deal with the covariate uncertainty while producing predictive inference. Using a Poisson error-in-variable generalized linear model, it has been shown that in complicated cases LP produces better results than already know methods.
Resumo:
Accurate speed prediction is a crucial step in the development of a dynamic vehcile activated sign (VAS). A previous study showed that the optimal trigger speed of such signs will need to be pre-determined according to the nature of the site and to the traffic conditions. The objective of this paper is to find an accurate predictive model based on historical traffic speed data to derive the optimal trigger speed for such signs. Adaptive neuro fuzzy (ANFIS), classification and regression tree (CART) and random forest (RF) were developed to predict one step ahead speed during all times of the day. The developed models were evaluated and compared to the results obtained from artificial neural network (ANN), multiple linear regression (MLR) and naïve prediction using traffic speed data collected at four sites located in Sweden. The data were aggregated into two periods, a short term period (5-min) and a long term period (1-hour). The results of this study showed that using RF is a promising method for predicting mean speed in the two proposed periods.. It is concluded that in terms of performance and computational complexity, a simplistic input features to the predicitive model gave a marked increase in the response time of the model whilse still delivering a low prediction error.