940 resultados para Bayesian belief networks
Resumo:
In this paper, we reflect upon our experiences and those of our peers as doctoral students and early career researchers in an Australian political science department. We seek to explain and understand the diverse ways that participating in an unofficial Feminist Reading Group in our department affected our experiences. We contend that informal peer support networks like reading groups do more than is conventionally assumed, and may provide important avenues for sustaining feminist research in times of austerity, as well as supporting and enabling women and emerging feminist scholars in academia. Participating in the group created a community of belonging and resistance, providing women with personal validation, information and material support, as well as intellectual and political resources to understand and resist our position within the often hostile spaces of the University. While these experiences are specific to our context, time and location, they signal that peer networks may offer critical political resources for responding to the ways that women’s bodies and concerns are marginalised in increasingly competitive and corporatised university environments.
Resumo:
Quantifying the impact of biochemical compounds on collective cell spreading is an essential element of drug design, with various applications including developing treatments for chronic wounds and cancer. Scratch assays are a technically simple and inexpensive method used to study collective cell spreading; however, most previous interpretations of scratch assays are qualitative and do not provide estimates of the cell diffusivity, D, or the cell proliferation rate,l. Estimating D and l is important for investigating the efficacy of a potential treatment and provides insight into the mechanism through which the potential treatment acts. While a few methods for estimating D and l have been proposed, these previous methods lead to point estimates of D and l, and provide no insight into the uncertainty in these estimates. Here, we compare various types of information that can be extracted from images of a scratch assay, and quantify D and l using discrete computational simulations and approximate Bayesian computation. We show that it is possible to robustly recover estimates of D and l from synthetic data, as well as a new set of experimental data. For the first time, our approach also provides a method to estimate the uncertainty in our estimates of D and l. We anticipate that our approach can be generalized to deal with more realistic experimental scenarios in which we are interested in estimating D and l, as well as additional relevant parameters such as the strength of cell-to-cell adhesion or the strength of cell-to-substrate adhesion.
Resumo:
School connectedness is central to the long term well-being of adolescents, and high quality parent-child relationships facilitate school connectedness. This study examined the extent to which family relationship quality is associated with the school connectedness of pre- and early teenagers, and how this association varies with adolescent involvement in peer drinking networks. The sample consisted of 7,372 10-14 year olds recruited from 231 schools in 30 Australian communities. Participants completed the Communities that Care youth survey. A multi-level model of school connectedness was used, with a random term for school-level variation. Key independent variables included family relationship quality, peer drinking networks, and school grade. Control variables included child gender, sensation seeking, depression, child alcohol use, parent education, and language spoken at home. For grade 6 students, the association of family relationship quality and school connectedness was lower when peer drinking networks were present, and this effect was nonsignificant for older (grade 8) students. Post hoc analyses indicated that the effect for family relationship quality on school connectedness was nonsignificant when adolescents in grade 6 reported that the majority of friends consumed alcohol. The results point to the importance of familyschool partnerships in early intervention and prevention.
Resumo:
Novel computer vision techniques have been developed to automatically detect unusual events in crowded scenes from video feeds of surveillance cameras. The research is useful in the design of the next generation intelligent video surveillance systems. Two major contributions are the construction of a novel machine learning model for multiple instance learning through compressive sensing, and the design of novel feature descriptors in the compressed video domain.
Resumo:
Approximate Bayesian Computation’ (ABC) represents a powerful methodology for the analysis of complex stochastic systems for which the likelihood of the observed data under an arbitrary set of input parameters may be entirely intractable – the latter condition rendering useless the standard machinery of tractable likelihood-based, Bayesian statistical inference [e.g. conventional Markov chain Monte Carlo (MCMC) simulation]. In this paper, we demonstrate the potential of ABC for astronomical model analysis by application to a case study in the morphological transformation of high-redshift galaxies. To this end, we develop, first, a stochastic model for the competing processes of merging and secular evolution in the early Universe, and secondly, through an ABC-based comparison against the observed demographics of massive (Mgal > 1011 M⊙) galaxies (at 1.5 < z < 3) in the Cosmic Assembly Near-IR Deep Extragalatic Legacy Survey (CANDELS)/Extended Groth Strip (EGS) data set we derive posterior probability densities for the key parameters of this model. The ‘Sequential Monte Carlo’ implementation of ABC exhibited herein, featuring both a self-generating target sequence and self-refining MCMC kernel, is amongst the most efficient of contemporary approaches to this important statistical algorithm. We highlight as well through our chosen case study the value of careful summary statistic selection, and demonstrate two modern strategies for assessment and optimization in this regard. Ultimately, our ABC analysis of the high-redshift morphological mix returns tight constraints on the evolving merger rate in the early Universe and favours major merging (with disc survival or rapid reformation) over secular evolution as the mechanism most responsible for building up the first generation of bulges in early-type discs.