901 resultados para Bayes Estimator
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A quantificação do impacto das práticas de preparo sobre as perdas de carbono do solo é dependente da habilidade de se descrever a variabilidade temporal da emissão de CO2 do solo após preparo. Tem sido sugerido que as grandes quantidades de CO2 emitido após o preparo do solo podem servir como um indicador das modificações nos estoques de carbono do solo em longo termo. Neste trabalho é apresentado um modelo de duas partes baseado na temperatura e na umidade do solo e que inclui um termo exponencial decrescente do tempo que é eficiente no ajuste das emissões intermediárias após preparo: arado de disco seguido de uma passagem com a grade niveladora (convencional) e escarificador de arrasto seguido da passagem com rolo destorroador (reduzido). As emissões após o preparo do solo são descritas utilizando-se estimativa não linear com um coeficiente de determinação (R²) tão alto quanto 0.98 após preparo reduzido. Os resultados indicam que nas previsões da emissão de CO2 após o preparo do solo é importante considerar um termo exponencial decrescente no tempo após preparo.
Resumo:
One of the greatest challenges of demography, nowadays, is to obtain estimates of mortality, in a consistent manner, mainly in small areas. The lack of this information, hinders public health actions and leads to impairment of quality of classification of deaths, generating concern on the part of demographers and epidemiologists in obtaining reliable statistics of mortality in the country. In this context, the objective of this work is to obtain estimates of deaths adjustment factors for correction of adult mortality, by States, meso-regions and age groups in the northeastern region, in 2010. The proposal is based on two lines of observation: a demographic one and a statistical one, considering also two areas of coverage in the States of the Northeast region, the meso-regions, as larger areas and counties, as small areas. The methodological principle is to use the General Equation and Balancing demographic method or General Growth Balance to correct the observed deaths, in larger areas (meso-regions) of the states, since they are less prone to breakage of methodological assumptions. In the sequence, it will be applied the statistical empirical Bayesian estimator method, considering as sum of deaths in the meso-regions, the death value corrected by the demographic method, and as reference of observation of smaller area, the observed deaths in small areas (counties). As results of this combination, a smoothing effect on the degree of coverage of deaths is obtained, due to the association with the empirical Bayesian Estimator, and the possibility of evaluating the degree of coverage of deaths by age groups at counties, meso-regions and states levels, with the advantage of estimete adjustment factors, according to the desired level of aggregation. The results grouped by State, point to a significant improvement of the degree of coverage of deaths, according to the combination of the methods with values above 80%. Alagoas (0.88), Bahia (0.90), Ceará (0.90), Maranhão (0.84), Paraíba (0.88), Pernambuco (0.93), Piauí (0.85), Rio Grande do Norte (0.89) and Sergipe (0.92). Advances in the control of the registry information in the health system, linked to improvements in socioeconomic conditions and urbanization of the counties, in the last decade, provided a better quality of information registry of deaths in small areas
Resumo:
This study aims to verify the impact of the Bolsa Família Program (BFP) in income and school attendance of poor Brazilian families. It is intended to also check the existence of a possible negative effect of the program on the labor market, titled as sloth effect. For such, microdata from the IBGE Census sample in 2010 were used. Seeking to purge possible selection biases, methodology of Quantilic Treatment Effect (QTE) was applied, in particular the estimator proposed by Firpo (2007), which assumes an exogenous and non-conditional treatment. Moreover, Foster- Greer-Thorbecke (FGT) index was calculated to check if there are fewer households below the poverty line, as well as if the inequality among the poor decreases. Human Opportunity Index (HOI) was also calculated to measure the access of young people / children education. Results showed that BFP has positively influenced the family per capita income and education (number of children aged 5-17 years old attending school). As for the labor market (worked hours and labor income), the program showed a negative effect. Thus, when compared with not benefiting families, those families who receive the BFP have: a) a higher family income (due to the shock of the transfer budget money) b) more children attending school (due to the conditionality imposed by the program); c) less worked hours (due to sloth effect in certain family groups) and d) a lower income from work. All these effects were potentiated separating the sample in the five Brazilian regions, being observed that the BFP strongly influenced the Northeast, showing a greater decrease in income inequality and poverty, and at the same time, achieved a greater negative impact on the labor market
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The portfolio theory is a field of study devoted to investigate the decision-making by investors of resources. The purpose of this process is to reduce risk through diversification and thus guarantee a return. Nevertheless, the classical Mean-Variance has been criticized regarding its parameters and it is observed that the use of variance and covariance has sensitivity to the market and parameter estimation. In order to reduce the estimation errors, the Bayesian models have more flexibility in modeling, capable of insert quantitative and qualitative parameters about the behavior of the market as a way of reducing errors. Observing this, the present study aimed to formulate a new matrix model using Bayesian inference as a way to replace the covariance in the MV model, called MCB - Covariance Bayesian model. To evaluate the model, some hypotheses were analyzed using the method ex post facto and sensitivity analysis. The benchmarks used as reference were: (1) the classical Mean Variance, (2) the Bovespa index's market, and (3) in addition 94 investment funds. The returns earned during the period May 2002 to December 2009 demonstrated the superiority of MCB in relation to the classical model MV and the Bovespa Index, but taking a little more diversifiable risk that the MV. The robust analysis of the model, considering the time horizon, found returns near the Bovespa index, taking less risk than the market. Finally, in relation to the index of Mao, the model showed satisfactory, return and risk, especially in longer maturities. Some considerations were made, as well as suggestions for further work
Resumo:
Foram obtidas equações de regressão linear simples para estimar a composição química corporal de bovinos Santa Gertrudes, a partir da composição química e física do corte das 9-10-11ª costelas. Quinze tourinhos, entre nove a 15 meses de idade e de 220 a 505 kg de peso, foram mantidos confinados. Os animais foram abatidos após jejum completo de 18 horas, sendo que seis deles foram abatidos após adaptação. A composição química em água, proteína, extrato etéreo e minerais foi determinada no corte das costelas e em amostras obtidas após moagem completa e homogeneização de todos os tecidos corporais, divididos em: sangue, couro, cabeça + patas, vísceras e carcaça. A composição física do corte das costelas foi obtida por separação manual do músculo, gordura e ossos. O peso do corpo vazio foi altamente correlacionado ao peso da carcaça quente (r² = 0,99). As porcentagens de água e extrato etéreo das 9-10-11ª costelas mostraram-se altamente correlacionadas com a composição química do corpo vazio, o que não ocorreu para as porcentagens de proteína e minerais. Esses teores foram calculados pela composição do corpo vazio desengordurado. A composição física do corte das costelas foi eficiente para estimar as porcentagens de água, extrato etéreo e minerais do corpo vazio, utilizando-se a porcentagem de gordura separável das costelas, mas não para estimar o teor de proteína. A composição física do corte das costelas demonstrou ser uma técnica eficiente, mas a composição química apresentou maiores coeficientes de determinação e menores erros da estimativa. Como a porcentagem de água no corpo vazio e no corte das costelas (r² = 0,95), e as porcentagens de água e de extrato etéreo no corpo vazio foram altamente correlacionadas (r² = 0,94), a porcentagem de água no corte das 9-10-11ª costelas poderia ser a única variável para estimativa da composição química corporal.
Resumo:
This work describes the study and the implementation of the vector speed control for a three-phase Bearingless induction machine with divided winding of 4 poles and 1,1 kW using the neural rotor flux estimation. The vector speed control operates together with the radial positioning controllers and with the winding currents controllers of the stator phases. For the radial positioning, the forces controlled by the internal machine magnetic fields are used. For the radial forces optimization , a special rotor winding with independent circuits which allows a low rotational torque influence was used. The neural flux estimation applied to the vector speed controls has the objective of compensating the parameter dependences of the conventional estimators in relation to the parameter machine s variations due to the temperature increases or due to the rotor magnetic saturation. The implemented control system allows a direct comparison between the respective responses of the speed and radial positioning controllers to the machine oriented by the neural rotor flux estimator in relation to the conventional flux estimator. All the system control is executed by a program developed in the ANSI C language. The DSP resources used by the system are: the Analog/Digital channels converters, the PWM outputs and the parallel and RS-232 serial interfaces, which are responsible, respectively, by the DSP programming and the data capture through the supervisory system
Resumo:
Most algorithms for state estimation based on the classical model are just adequate for use in transmission networks. Few algorithms were developed specifically for distribution systems, probably because of the little amount of data available in real time. Most overhead feeders possess just current and voltage measurements at the middle voltage bus-bar at the substation. In this way, classical algorithms are of difficult implementation, even considering off-line acquired data as pseudo-measurements. However, the necessity of automating the operation of distribution networks, mainly in regard to the selectivity of protection systems, as well to implement possibilities of load transfer maneuvers, is changing the network planning policy. In this way, some equipments incorporating telemetry and command modules have been installed in order to improve operational features, and so increasing the amount of measurement data available in real-time in the System Operation Center (SOC). This encourages the development of a state estimator model, involving real-time information and pseudo-measurements of loads, that are built from typical power factors and utilization factors (demand factors) of distribution transformers. This work reports about the development of a new state estimation method, specific for radial distribution systems. The main algorithm of the method is based on the power summation load flow. The estimation is carried out piecewise, section by section of the feeder, going from the substation to the terminal nodes. For each section, a measurement model is built, resulting in a nonlinear overdetermined equations set, whose solution is achieved by the Gaussian normal equation. The estimated variables of a section are used as pseudo-measurements for the next section. In general, a measurement set for a generic section consists of pseudo-measurements of power flows and nodal voltages obtained from the previous section or measurements in real-time, if they exist -, besides pseudomeasurements of injected powers for the power summations, whose functions are the load flow equations, assuming that the network can be represented by its single-phase equivalent. The great advantage of the algorithm is its simplicity and low computational effort. Moreover, the algorithm is very efficient, in regard to the accuracy of the estimated values. Besides the power summation state estimator, this work shows how other algorithms could be adapted to provide state estimation of middle voltage substations and networks, namely Schweppes method and an algorithm based on current proportionality, that is usually adopted for network planning tasks. Both estimators were implemented not only as alternatives for the proposed method, but also looking for getting results that give support for its validation. Once in most cases no power measurement is performed at beginning of the feeder and this is required for implementing the power summation estimations method, a new algorithm for estimating the network variables at the middle voltage bus-bar was also developed
Resumo:
This work describes the study and the implementation of the speed control for a three-phase induction motor of 1,1 kW and 4 poles using the neural rotor flux estimation. The vector speed control operates together with the winding currents controller of the stator phasis. The neural flux estimation applied to the vector speed controls has the objective of compensating the parameter dependences of the conventional estimators in relation to the parameter machine s variations due to the temperature increases or due to the rotor magnetic saturation. The implemented control system allows a direct comparison between the respective responses of the speed controls to the machine oriented by the neural rotor flux estimator in relation to the conventional flux estimator. All the system control is executed by a program developed in the ANSI C language. The main DSP recources used by the system are, respectively, the Analog/Digital channels converters, the PWM outputs and the parallel and RS-232 serial interfaces, which are responsible, respectively, by the DSP programming and the data capture through the supervisory system
Resumo:
Equipment maintenance is the major cost factor in industrial plants, it is very important the development of fault predict techniques. Three-phase induction motors are key electrical equipments used in industrial applications mainly because presents low cost and large robustness, however, it isn t protected from other fault types such as shorted winding and broken bars. Several acquisition ways, processing and signal analysis are applied to improve its diagnosis. More efficient techniques use current sensors and its signature analysis. In this dissertation, starting of these sensors, it is to make signal analysis through Park s vector that provides a good visualization capability. Faults data acquisition is an arduous task; in this way, it is developed a methodology for data base construction. Park s transformer is applied into stationary reference for machine modeling of the machine s differential equations solution. Faults detection needs a detailed analysis of variables and its influences that becomes the diagnosis more complex. The tasks of pattern recognition allow that systems are automatically generated, based in patterns and data concepts, in the majority cases undetectable for specialists, helping decision tasks. Classifiers algorithms with diverse learning paradigms: k-Neighborhood, Neural Networks, Decision Trees and Naïves Bayes are used to patterns recognition of machines faults. Multi-classifier systems are used to improve classification errors. It inspected the algorithms homogeneous: Bagging and Boosting and heterogeneous: Vote, Stacking and Stacking C. Results present the effectiveness of constructed model to faults modeling, such as the possibility of using multi-classifiers algorithm on faults classification
Resumo:
One of the most important goals of bioinformatics is the ability to identify genes in uncharacterized DNA sequences on world wide database. Gene expression on prokaryotes initiates when the RNA-polymerase enzyme interacts with DNA regions called promoters. In these regions are located the main regulatory elements of the transcription process. Despite the improvement of in vitro techniques for molecular biology analysis, characterizing and identifying a great number of promoters on a genome is a complex task. Nevertheless, the main drawback is the absence of a large set of promoters to identify conserved patterns among the species. Hence, a in silico method to predict them on any species is a challenge. Improved promoter prediction methods can be one step towards developing more reliable ab initio gene prediction methods. In this work, we present an empirical comparison of Machine Learning (ML) techniques such as Na¨ýve Bayes, Decision Trees, Support Vector Machines and Neural Networks, Voted Perceptron, PART, k-NN and and ensemble approaches (Bagging and Boosting) to the task of predicting Bacillus subtilis. In order to do so, we first built two data set of promoter and nonpromoter sequences for B. subtilis and a hybrid one. In order to evaluate of ML methods a cross-validation procedure is applied. Good results were obtained with methods of ML like SVM and Naïve Bayes using B. subtilis. However, we have not reached good results on hybrid database
Resumo:
This dissertation presents a new proposal for the Direction of Arrival (DOA) detection problem for more than one signal inciding simultaneously on an antennas array with linear or planar geometry by using intelligent algorithms. The DOA estimator is developed by using techniques of Conventional Beam-forming (CBF), Blind Source Separation (BSS), and the neural estimator MRBF (Modular Structure of Radial Basis Functions). The developed MRBF estimator has its capacity extended due to the interaction with the BSS technique. The BSS makes an estimation of the steering vectors of the multiple plane waves that reach the array in the same frequency, that means, obtains to separate mixed signals without information a priori. The technique developed in this work makes possible to identify the multiple sources directions and to identify and to exclude interference sources
Resumo:
Nowadays, classifying proteins in structural classes, which concerns the inference of patterns in their 3D conformation, is one of the most important open problems in Molecular Biology. The main reason for this is that the function of a protein is intrinsically related to its spatial conformation. However, such conformations are very difficult to be obtained experimentally in laboratory. Thus, this problem has drawn the attention of many researchers in Bioinformatics. Considering the great difference between the number of protein sequences already known and the number of three-dimensional structures determined experimentally, the demand of automated techniques for structural classification of proteins is very high. In this context, computational tools, especially Machine Learning (ML) techniques, have become essential to deal with this problem. In this work, ML techniques are used in the recognition of protein structural classes: Decision Trees, k-Nearest Neighbor, Naive Bayes, Support Vector Machine and Neural Networks. These methods have been chosen because they represent different paradigms of learning and have been widely used in the Bioinfornmatics literature. Aiming to obtain an improvment in the performance of these techniques (individual classifiers), homogeneous (Bagging and Boosting) and heterogeneous (Voting, Stacking and StackingC) multiclassification systems are used. Moreover, since the protein database used in this work presents the problem of imbalanced classes, artificial techniques for class balance (Undersampling Random, Tomek Links, CNN, NCL and OSS) are used to minimize such a problem. In order to evaluate the ML methods, a cross-validation procedure is applied, where the accuracy of the classifiers is measured using the mean of classification error rate, on independent test sets. These means are compared, two by two, by the hypothesis test aiming to evaluate if there is, statistically, a significant difference between them. With respect to the results obtained with the individual classifiers, Support Vector Machine presented the best accuracy. In terms of the multi-classification systems (homogeneous and heterogeneous), they showed, in general, a superior or similar performance when compared to the one achieved by the individual classifiers used - especially Boosting with Decision Tree and the StackingC with Linear Regression as meta classifier. The Voting method, despite of its simplicity, has shown to be adequate for solving the problem presented in this work. The techniques for class balance, on the other hand, have not produced a significant improvement in the global classification error. Nevertheless, the use of such techniques did improve the classification error for the minority class. In this context, the NCL technique has shown to be more appropriated
Resumo:
This paper describes the study, computer simulation and feasibility of implementation of vector control speed of an induction motor using for this purpose the Extended Kalman Filter as an estimator of rotor flux. The motivation for such work is the use of a control system that requires no sensors on the machine shaft, thus providing a considerable cost reduction of drives and their maintenance, increased reliability, robustness and noise immunity as compared to control systems with conventional sensors