816 resultados para BRANCHED POLYETHYLENES
Resumo:
A 20 kyr long sediment sequence from the Congo deep sea fan (core GeoB 6518-1), one of the world's largest deep sea river fans, has been analysed for bulk and molecular proxies in order to reconstruct the marine, soil and plant organic carbon (OC) contributions to these sediments since the last glacial maximum. The bulk proxies applied, C/N ratio and d13Corg, ranged from 10 to 12.5 and from -24.5 to -21 per mill VPDB, respectively. As molecular proxies, concentrations of marine derived alkenones and terrestrial derived odd-numbered n-alkanes were used, which varied between 0.2 and 4 µg/g dry weight sediment. In addition, the branched vs. isoprenoid tetraether (BIT) index, a proxy for soil organic matter input, was used, which varied from 0.3 to 0.5 in this core. Application of binary mixing models, based on the different individual proxies, showed estimates for terrestrial OC input varying by up to 50% due to the heterogeneous nature of the OC. Application of a three end-member mixing model using the d13Corg content, the C/N ratio and the BIT index, enabled the distinction of soil and plant organic matter as separate contributors to the sedimentary OC pool. The results show that marine OC accounts for 20% to 40% of the total OC present in the deep sea fan sediments over the last 20 kyr and that soil OC accounts for about half (45% on average) of the OC present. This suggests that soil OC represents the majority of the terrestrial OC delivered to the fan sediments. Accumulation rates of the plant and soil OC fractions over the last 20 kyr varied by a factor of up to 5, and are strongly related to sediment accumulation rates. They showed an increase starting at ca. 17 kyr BP, a decline during the Younger Dryas, peak values during the early Holocene and lower values in the late Holocene. This pattern matches with reconstructions of past central African humidity and Congo River discharge from the same core and revealed that central African precipitation patterns exert a dominant control on terrestrial OC deposition in the Congo deep sea fan. Marine OC accumulation rates are only weakly related to sediment accumulation rates and vary only little over time compared to the terrigenous fractions. These variations are likely a result of enhanced preservation during times of higher sedimentation rates and of relative small fluctuations in primary production due to wind-driven upwelling.
Resumo:
There are serious concerns that ocean acidification will combine with the effects of global warming to cause major shifts in marine ecosystems, but there is a lack of field data on the combined ecological effects of these changes due to the difficulty of creating large-scale, long-term exposures to elevated CO2 and temperature. Here we report the first coastal transplant experiment designed to investigate the effects of naturally acidified seawater on the rates of net calcification and dissolution of the branched calcitic bryozoan Myriapora truncata (Pallas, 1766). Colonies were transplanted to normal (pH 8.1), high (mean pH 7.66, minimum value 7.33) and extremely high CO2 conditions (mean pH 7.43, minimum value 6.83) at gas vents off Ischia Island (Tyrrhenian Sea, Italy). The net calcification rates of live colonies and the dissolution rates of dead colonies were estimated by weighing after 45 days (May-June 2008) and after 128 days (July-October) to examine the hypothesis that high CO2 levels affect bryozoan growth and survival differently during moderate and warm water conditions. In the first observation period, seawater temperatures ranged from 19 to 24 °C; dead M. truncata colonies dissolved at high CO2 levels (pH 7.66), whereas live specimens maintained the same net calcification rate as those growing at normal pH. In extremely high CO2 conditions (mean pH 7.43), the live bryozoans calcified significantly less than those at normal pH. Therefore, established colonies of M. truncata seem well able to withstand the levels of ocean acidification predicted in the next 200 years, possibly because the soft tissues protect the skeleton from an external decrease in pH. However, during the second period of observation a prolonged period of high seawater temperatures (25-28 °C) halted calcification both in controls and at high CO2, and all transplants died when high temperatures were combined with extremely high CO2 levels. Clearly, attempts to predict the future response of organisms to ocean acidification need to consider the effects of concurrent changes such as the Mediterranean trend for increased summer temperatures in surface waters. Although M. truncata was resilient to short-term exposure to high levels of ocean acidification at normal temperatures, our field transplants showed that its ability to calcify at higher temperatures was compromised, adding it to the growing list of species now potentially threatened by global warming.
Resumo:
The transition from the last Glacial to the current Interglacial, the Holocene, represents an important period with climatic and environmental changes impacting ecosystems. In this study, we examined the interplay between the Indian Ocean Summer Monsoon (IOSM) and the Westerlies at lake Nam Co, southern Tibet to understand the climatic effects on the ecosystem. Different organic geochemical proxies (n-alkanes, glycerol dialkyl glycerol tetraethers, dD, d13Corg, d15N) are applied to reconstruct the environmental and hydrological changes on one of the longest available paleorecords at the Tibetan Plateau. Based on our paleohydrological dD proxies, the aquatic signal lags the terrestrial one due to specific ecological thresholds, which, in addition to climatic changes, can influence aquatic organisms. The aquatic organisms' response strongly depends on temperature and associated lake size, as well as pH and nutrient availability. Because the terrestrial vegetation reacts faster and more sensitively to changes in the monsoonal and climatic system, the dD of n-C29 and the reconstructed inflow water signal represent an appropriate IOSM proxy. In general, the interplay of the different air masses seems to be primarily controlled by solar insolation. In the Holocene, the high insolation generates a large land-ocean pressure gradient associated with strong monsoonal winds and the strongest IOSM. In the last glacial period, however, the weak insolation promoted the Westerlies, thereby increasing their influence at the Tibetan Plateau. Our results help to elucidate the variable IOSM, and they illustrate a remarkable shift in the lake system regarding pH, d13Corg and d15N from the last glacial to the Holocene interglacial period.
Resumo:
In this study, we obtained concentrations and abundance ratios of long-chain alkenones and glycerol dialkyl glycerol tetraethers (GDGTs) in a one-year time-series of sinking particles collected with a sediment trap moored from December 2001 to November 2002 at 2200 m water depth south of Java in the eastern Indian Ocean. We investigate the seasonality of alkenone and GDGT fluxes as well as the potential habitat depth of the Thaumarchaeota producing the GDGTs entrained in sinking particles. The alkenone flux shows a pronounced seasonality and ranges from 1 µg m-**2 d**-1 to 35 µg m**-2 d**-1. The highest alkenone flux is observed in late September during the Southeast monsoon, coincident with high total organic carbon fluxes as well as high net primary productivity. Flux-weighted mean temperature for the high flux period using the alkenone-based sea-surface temperature (SST) index UK'37 is 26.7°C, which is similar to satellite-derived Southeast (SE) monsoon SST (26.4°C). The GDGT flux displays a weaker seasonality than that of the alkenones. It is elevated during the SE monsoon period compared to the Northwest (NW) monsoon and intermonsoon periods (approximately 2.5 times), which is probably related to seasonal variation of the abundance of Thaumarchaeota, or to enhanced export of GDGTs by aggregation with sinking phytoplankton detritus. Flux-weighted mean temperature inferred from the GDGT-based TEXH86 index is 26.2°C, which is 1.8 °C lower than mean annual (ma) SST but similar to SE monsoon SST. As the time series of TEXH86 temperature estimates, however, does not record a strong seasonal amplitude, we infer that TEXH86 reflects ma upper thermocline temperature at approximately 50 m water depth.
Resumo:
In this article we analyze the Debate on the State of the Nation 2014. The methodology consists in coding the speeches of the prime minister, Mariano Rajoy (PP) and the then opposition leader Alfredo Perez Rubalcaba (PSOE) through extracting word clouds, branched maps and word trees that have shown the most common concepts and premises. This preliminary analysis of two dimensions, quantitative and qualitative, makes it much easier and viable subsequent discourse analysis where we focus on the different types of arguments in the communicative act: claim/solution, circumstantial premises, goal premises, value premises, meansgoal premises, alternative options/addressing alternative options.
Resumo:
The branched vs. isoprenoid tetraether (BIT) index is based on the relative abundance of branched tetraether lipids (brGDGTs) and the isoprenoidal GDGT crenarchaeol. In Lake Challa sediments the BIT index has been applied as a proxy for local monsoon precipitation on the assumption that the primary source of brGDGTs is soil washed in from the lake's catchment. Since then, microbial production within the water column has been identified as the primary source of brGDGTs in Lake Challa sediments, meaning that either an alternative mechanism links BIT index variation with rainfall or that the proxy's application must be reconsidered. We investigated GDGT concentrations and BIT index variation in Lake Challa sediments at a decadal resolution over the past 2200 years, in combination with GDGT time-series data from 45 monthly sediment-trap samples and a chronosequence of profundal surface sediments.
Our 2200-year geochemical record reveals high-frequency variability in GDGT concentrations, and therefore in the BIT index, superimposed on distinct lower-frequency fluctuations at multi-decadal to century timescales. These changes in BIT index are correlated with changes in the concentration of crenarchaeol but not with those of the brGDGTs. A clue for understanding the indirect link between rainfall and crenarchaeol concentration (and thus thaumarchaeotal abundance) was provided by the observation that surface sediments collected in January 2010 show a distinct shift in GDGT composition relative to sediments collected in August 2007. This shift is associated with increased bulk flux of settling mineral particles with high Ti / Al ratios during March–April 2008, reflecting an event of unusually high detrital input to Lake Challa concurrent with intense precipitation at the onset of the principal rain season that year. Although brGDGT distributions in the settling material are initially unaffected, this soil-erosion event is succeeded by a massive dry-season diatom bloom in July–September 2008 and a concurrent increase in the flux of GDGT-0. Complete absence of crenarchaeol in settling particles during the austral summer following this bloom indicates that no Thaumarchaeota bloom developed at that time. We suggest that increased nutrient availability, derived from the eroded soil washed into the lake, caused the massive bloom of diatoms and that the higher concentrations of ammonium (formed from breakdown of this algal matter) resulted in a replacement of nitrifying Thaumarchaeota, which in typical years prosper during the austral summer, by nitrifying bacteria. The decomposing dead diatoms passing through the suboxic zone of the water column probably also formed a substrate for GDGT-0-producing archaea. Hence, through a cascade of events, intensive rainfall affects thaumarchaeotal abundance, resulting in high BIT index values.
Decade-scale BIT index fluctuations in Lake Challa sediments exactly match the timing of three known episodes of prolonged regional drought within the past 250 years. Additionally, the principal trends of inferred rainfall variability over the past two millennia are consistent with the hydroclimatic history of equatorial East Africa, as has been documented from other (but less well dated) regional lake records. We therefore propose that variation in GDGT production originating from the episodic recurrence of strong soil-erosion events, when integrated over (multi-)decadal and longer timescales, generates a stable positive relationship between the sedimentary BIT index and monsoon rainfall at Lake Challa. Application of this paleoprecipitation proxy at other sites requires ascertaining the local processes which affect the productivity of crenarchaeol by Thaumarchaeota and brGDGTs.
Resumo:
OBJECTIVE: Abdominal obesity is associated with increased risk of type 2 diabetes (T2D) and cardiovascular disease. The aim of this study was to assess whether metabolomic markers of T2D and blood pressure (BP) act on these traits via visceral fat (VF) mass.
METHODS: Metabolomic profiling of 280 fasting plasma metabolites was conducted on 2,401 women from TwinsUK. The overlap was assessed between published metabolites associated with T2D, insulin resistance, or BP and those that were identified to be associated with VF (after adjustment for covariates) measured by dual-energy X-ray absorptiometry.
RESULTS: In addition to glucose, six metabolites were strongly associated with both VF mass and T2D: lactate and branched-chain amino acids, all of them related to metabolism and the tricarboxylic acid cycle; on average, 38.5% of their association with insulin resistance was mediated by their association with VF mass. Five metabolites were associated with BP and VF mass including the inflammation-associated peptide HWESASXX, the steroid hormone androstenedione, lactate, and palmitate. On average, 29% of their effect on BP was mediated by their association with VF mass.
CONCLUSIONS: Little overlap was found between the metabolites associated with BP and those associated with insulin resistance via VF mass.
Resumo:
The particle size, shape and distribution of a range of rotational moulding polyethylenes (PEs) ground to powder was investigated using a novel visual data acquisition and analysis system (TP Picture®), developed by Total Petrochemicals. Differences in the individual particle shape factors of the powder samples were observed and correlations with the grinding conditions were determined. When heated, the bubble dissolution behaviour of the same powders was investigated and the shape factor correlated with densification rate, bubble size and bubble distribution.
Resumo:
Dissertacao (Mestrado)
Resumo:
agricultural, pharmaceutical, cosmetic or bioenergy applications. They contain bioactive compounds, namely, polysaccharides Fucoidan. These polysaccharides are mainly constituted by fucose residues and sulfate esters, and have been reported to possess a broad variety of bioactivities, such as anticoagulant, anti-thrombotic, anti-inflammatory, anti-tumor, antiviral and antioxidant. In this work, the fucoidans from brown seaweed Fucus vesiculosus from “Ria de Aveiro” were isolated and characterized in order to add value to this natural resource of the region. The polysaccharides from the algae were extracted with hot water and fractioned by ethanol precipitation and calcium chloride salts. They were further purified by using anion-exchange chromatography, allowing to separate the neutral polysaccharides (laminaranas) from those negatively charged (sulfated fucoidans and alginate). The purified polysaccharides showed high content of fucose (41 mol%) and sulfates (50 mol%), having also galactose residues (6 mol%), which confirm the presence of only sulfated fucoidans. Glycosidic linkages analysis show the presence of high amounts of terminal fucose (25%) and (1→3,4)-Fuc (26%), allowing to infer that the fucoidans were highly branched. These fucoidans are composed also by (1→2)-Fuc (14%) and (1→3)-Fuc linkages (10-16%). In this work it was also tested an alternative extraction technology, the microwave hydrodiffusion and gravity system, where it was possible to extract sugars, although in low yields. However, this methodology allowed to extract polysaccharides, constituted mainly by fucose and uronic acids, as well as mannitol, without the need to add any solvent, obtaining at the end the dry alga. The current work allowed to characterize the structure of the fucoidans isolated from “Ria de Aveiro” F. vesiculosus. The presence of high content of sulfate residues and the high branch degree of the purified fucoidans allow to infer that these polysaccharides could have potential to be studied for biomedical applications, according to their biological activities.