972 resultados para BOUND EXCITONS
Resumo:
Background: Mushroom polysaccharides play an important role in functional foods because they exhibit biological modulator properties such as antitumour, antiviral and antibacterial activities. The present study involved the production, purification and characterisation of intracellular and extracellular free and protein-bound polysaccharides from Pleurotus ostreatus and the investigation of their growth-inhibitory effect on human carcinoma cell lines. Results: Several fermentation parameters were obtained: batch polysaccharide productivities of 0.013 +/- 8.12 x 10-5 and 0.037 +/- 0.0005 g L-1 day-1 for intracellular and extracellular polysaccharides respectively, a maximum biomass concentration of 9.35 +/- 0.18 g L-1, Pmax = 0.935 +/- 0.018 g L-1 day-1, µmax = 0.218 +/- 0.02 day-1, YEP/X = 0.040 +/- 0.0015 g g-1 and YIP/X = 0.014 +/- 0.0003 g g-1. Some polysaccharides exhibited superoxide dismutase (SOD)-like activity of 50-200 units. Fourier transform infrared analysis of the polysaccharides revealed absorption bands characteristic of such biological macromolecules. Cytotoxicity assays showed that both intracellular and extracellular polysaccharides exhibited antitumour activity towards several tested human carcinoma cell lines in a dose-dependent manner. Conclusion - The polysaccharides of P. ostreatus exhibited high SOD-like activity, which strongly supports their biological effect on tumour cell lines. The extracellular polysaccharides presented the highest antitumour activity towards the RL95 carcinoma cell line and should be further investigated as an antitumour agent.
Resumo:
This paper reports on the creation of an interface for 3D virtual environments, computer-aided design applications or computer games. Standard computer interfaces are bound to 2D surfaces, e.g., computer mouses, keyboards, touch pads or touch screens. The Smart Object is intended to provide the user with a 3D interface by using sensors that register movement (inertial measurement unit), touch (touch screen) and voice (microphone). The design and development process as well as the tests and results are presented in this paper. The Smart Object was developed by a team of four third-year engineering students from diverse scientific backgrounds and nationalities during one semester.
Resumo:
Methods generally utilized for studies on anaphylaxis to protein antigens such as determination of histamine release to the blood, hemoconcentration, histamine release from peritoneal mast cells and passive cutaneous anaphylaxis (PCA) were used to investigate some aspects of the anaphylaxis to parasite antigens in Schistosoma mansoni infected mice. The release of histamine to the blood and significant rates of hemoconcentration were induced by intravenous injection of schistosomula or cercarial extracts into 10-13 weeks infected mice. Cercarial, schistosomula, worm tegument and soluble egg antigens were able to trigger histamine release from peritoneal mast cells from chronically infected mice. In spite of the PCA reaction beeing detected within 2 hours of sensitization (IgG1antibodies) in 6 of 8 tested sera from chronically infected mice, no detectable reactions were obtained after 48 hours sensitization (IgE antibodies). Although IgE was not detected in the circulation, by the PCA technique, the results indicate that the infected mice contained IgE antibodies bound to their mast cells.
Resumo:
Sera of Chaga's disease patients containing anti-T. cruzi lytic antibodies were submitted to affinity chromatography using Sepharose 4B conjugated with antigen extracted from epimasiigote or trypomasiigote forms of the parasite. Epimastigotes were obtained from culture at the exponential growth phase and the trypomastigotes from blood of infected and immunosuppressed mice. Antigen of both parasite forms was obtained by sonication of the parasites followed by centrifugation. Both antigens were then conjugated to activated Sepharose 4B. Affinity chromatography was performed by passing sera from chagasic patients through an immunoadsorbent column containing either epimasiigote or trypomasiigote antigens. Antibodies bound to the column were eluted with cold 0,2 M glycine buffer pH 2,8. The eluted antibodies were analysed regarding their isotype and lytic activity. The results showed that anti-T. cruzi lytic antibodies present in sera from chagasic patients are mainly located in the IgG isotype and recognize epitopes present in both trypomasiigote and epimastigote forms. A brief report of this work has already been published12.
Resumo:
Trabalho de projeto realizado para obtenção do grau de Mestre em Engenharia Informática e de Computadores
Resumo:
A dot enzyme-linked immunosorbent assay (DOT-ELISA) was developed to detect specific antibodies in cerebrospinal fluid (CSF) for human neurocysticercosis immunodiagnosis, with Cysticercus cellulosae antigen dotted on a new solid-phase. This was represented by sheets of a synthetic polyester fabric impregnated with a polymerized resin (N-methylol-acrylamide). A very stable preparation was thus obtained, the antigen being covalently bound by cross-linking with free N-methylol groups on the resin. Since robust, no special care was necessary for handling the solid-phase. The test could be performed at room-temperature. From 30 CSF samples assayed, 14 were positive, from a group of 15 cases of neurocysticercosis, with titers from 1 to 128; 15 other samples, from normals or other neurological diseases, were all negative. Test characteristics seem to indicate it as adequate for epidemiological surveys. A more detailed study on sensitivity, specificity, reproducibility and the use in serum samples is being conducted.
Resumo:
Passage of high-speed trains may induce high ground and track vibrations, which, besides increasing wheel, rail and track deterioration, may have a negative impact on the vehicle stability and on the passengers comfort. In this paper two distinct analyses are presented. The first one is dedicated to efficient decoupling of rail and soil vibrations by suggesting new interface materials in rail-sleeper fixing system, i.e. in the part where damping efficiency can be directly controlled and tested. The second analysis concerns with an adequate model of soils damping. Proper understanding and correct numerical simulation of this behaviour can help in suggesting soil improvement techniques.
Resumo:
Dissertação apresentada para obtenção do grau de Doutor em Bioquímica,especialidade Bioquímica-Física, pela Universidade Nova de Lisboa, Faculdade de Cincias e Tecnologia
Resumo:
Hospitals are considered as a special and important type of indoor public place where air quality has significant impacts on potential health outcomes. Information on indoor air quality of these environments, concerning exposures to particulate matter (PM) and related toxicity, is limited though. This work aims to evaluate risks associated with inhalation exposure to ten toxic metals and chlorine (As, Ni, Cr, Cd, Pb, Mn, Se, Ba, Al, Si, and Cl) in coarse (PM2.5–10) and fine (PM2.5) particles in a Portuguese hospital in comparison with studies representative of other countries. Samples were collected during 1 month in one urban hospital; elemental PM characterization was determined by proton-induced X-ray emission. Noncarcinogenic and carcinogenic risks were assessed according to the methodology provided by the United States Environmental Protection Agency (USEPA; Region III Risk-Based Concentration Table) for three different age categories of hospital personnel (adults, >20, and <65 years) and patients (considering nine different age groups, i.e., children of 1–3 years to seniors of >65 years). The estimated noncarcinogenic risks due to occupational inhalation exposure to PM2.5-bound metals ranged from 5.88×10−6 for Se (adults, 55–64 years) to 9.35×10−1 for As (adults, 20–24 years) with total noncarcinogenic risks (sum of all metals) above the safe level for all three age categories. As and Cl (the latter due to its high abundances) were the most important contributors (approximately 90 %) to noncarcinogenic risks. For PM2.5–10, noncarcinogenic risks of all metals were acceptable to all age groups. Concerning carcinogenic risks, for Ni and Pb, they were negligible (<1×10−6) in both PM fractions for all age groups of hospital personnel; potential risks were observed for As and Cr with values in PM2.5 exceeding (up to 62 and 5 times, respectively) USEPA guideline across all age groups; for PM2.5–10, increased excess risks of As and Cr were observed particularly for long-term exposures (adults, 55–64 years). Total carcinogenic risks highly (up to 67 times) exceeded the recommended level for all age groups, thus clearly showing that occupational exposure to metals in fine particles pose significant risks. If the extensive working hours of hospital medical staff were considered, the respective noncarcinogenic and carcinogenic risks were increased, the latter for PM2.5 exceeding the USEPA cumulative guideline of 10−4. For adult patients, the estimated noncarcinogenic and carcinogenic risks were approximately three times higher than for personnel, with particular concerns observed for children and adolescents.
Resumo:
Consider the problem of assigning implicit-deadline sporadic tasks on a heterogeneous multiprocessor platform comprising two different types of processors—such a platform is referred to as two-type platform. We present two low degree polynomial time-complexity algorithms, SA and SA-P, each providing the following guarantee. For a given two-type platform and a task set, if there exists a task assignment such that tasks can be scheduled to meet deadlines by allowing them to migrate only between processors of the same type (intra-migrative), then (i) using SA, it is guaranteed to find such an assignment where the same restriction on task migration applies but given a platform in which processors are 1+α/2 times faster and (ii) SA-P succeeds in finding a task assignment where tasks are not allowed to migrate between processors (non-migrative) but given a platform in which processors are 1+α times faster. The parameter 0<α≤1 is a property of the task set; it is the maximum of all the task utilizations that are no greater than 1. We evaluate average-case performance of both the algorithms by generating task sets randomly and measuring how much faster processors the algorithms need (which is upper bounded by 1+α/2 for SA and 1+α for SA-P) in order to output a feasible task assignment (intra-migrative for SA and non-migrative for SA-P). In our evaluations, for the vast majority of task sets, these algorithms require significantly smaller processor speedup than indicated by their theoretical bounds. Finally, we consider a special case where no task utilization in the given task set can exceed one and for this case, we (re-)prove the performance guarantees of SA and SA-P. We show, for both of the algorithms, that changing the adversary from intra-migrative to a more powerful one, namely fully-migrative, in which tasks can migrate between processors of any type, does not deteriorate the performance guarantees. For this special case, we compare the average-case performance of SA-P and a state-of-the-art algorithm by generating task sets randomly. In our evaluations, SA-P outperforms the state-of-the-art by requiring much smaller processor speedup and by running orders of magnitude faster.
Resumo:
Consider the problem of assigning implicit-deadline sporadic tasks on a heterogeneous multiprocessor platform comprising a constant number (denoted by t) of distinct types of processors—such a platform is referred to as a t-type platform. We present two algorithms, LPGIM and LPGNM, each providing the following guarantee. For a given t-type platform and a task set, if there exists a task assignment such that tasks can be scheduled to meet their deadlines by allowing them to migrate only between processors of the same type (intra-migrative), then: (i) LPGIM succeeds in finding such an assignment where the same restriction on task migration applies (intra-migrative) but given a platform in which only one processor of each type is 1 + α × t-1/t times faster and (ii) LPGNM succeeds in finding a task assignment where tasks are not allowed to migrate between processors (non-migrative) but given a platform in which every processor is 1 + α times faster. The parameter α is a property of the task set; it is the maximum of all the task utilizations that are no greater than one. To the best of our knowledge, for t-type heterogeneous multiprocessors: (i) for the problem of intra-migrative task assignment, no previous algorithm exists with a proven bound and hence our algorithm, LPGIM, is the first of its kind and (ii) for the problem of non-migrative task assignment, our algorithm, LPGNM, has superior performance compared to state-of-the-art.
Resumo:
The multiprocessor scheduling scheme NPS-F for sporadic tasks has a high utilisation bound and an overall number of preemptions bounded at design time. NPS-F binpacks tasks offline to as many servers as needed. At runtime, the scheduler ensures that each server is mapped to at most one of the m processors, at any instant. When scheduled, servers use EDF to select which of their tasks to run. Yet, unlike the overall number of preemptions, the migrations per se are not tightly bounded. Moreover, we cannot know a priori which task a server will be currently executing at the instant when it migrates. This uncertainty complicates the estimation of cache-related preemption and migration costs (CPMD), potentially resulting in their overestimation. Therefore, to simplify the CPMD estimation, we propose an amended bin-packing scheme for NPS-F allowing us (i) to identify at design time, which task migrates at which instant and (ii) bound a priori the number of migrating tasks, while preserving the utilisation bound of NPS-F.
Resumo:
Consider the problem of scheduling a task set τ of implicit-deadline sporadic tasks to meet all deadlines on a t-type heterogeneous multiprocessor platform where tasks may access multiple shared resources. The multiprocessor platform has m k processors of type-k, where k∈{1,2,…,t}. The execution time of a task depends on the type of processor on which it executes. The set of shared resources is denoted by R. For each task τ i , there is a resource set R i ⊆R such that for each job of τ i , during one phase of its execution, the job requests to hold the resource set R i exclusively with the interpretation that (i) the job makes a single request to hold all the resources in the resource set R i and (ii) at all times, when a job of τ i holds R i , no other job holds any resource in R i . Each job of task τ i may request the resource set R i at most once during its execution. A job is allowed to migrate when it requests a resource set and when it releases the resource set but a job is not allowed to migrate at other times. Our goal is to design a scheduling algorithm for this problem and prove its performance. We propose an algorithm, LP-EE-vpr, which offers the guarantee that if an implicit-deadline sporadic task set is schedulable on a t-type heterogeneous multiprocessor platform by an optimal scheduling algorithm that allows a job to migrate only when it requests or releases a resource set, then our algorithm also meets the deadlines with the same restriction on job migration, if given processors 4×(1+MAXP×⌈|P|×MAXPmin{m1,m2,…,mt}⌉) times as fast. (Here MAXP and |P| are computed based on the resource sets that tasks request.) For the special case that each task requests at most one resource, the bound of LP-EE-vpr collapses to 4×(1+⌈|R|min{m1,m2,…,mt}⌉). To the best of our knowledge, LP-EE-vpr is the first algorithm with proven performance guarantee for real-time scheduling of sporadic tasks with resource sharing on t-type heterogeneous multiprocessors.
Resumo:
“Many-core” systems based on a Network-on-Chip (NoC) architecture offer various opportunities in terms of performance and computing capabilities, but at the same time they pose many challenges for the deployment of real-time systems, which must fulfill specific timing requirements at runtime. It is therefore essential to identify, at design time, the parameters that have an impact on the execution time of the tasks deployed on these systems and the upper bounds on the other key parameters. The focus of this work is to determine an upper bound on the traversal time of a packet when it is transmitted over the NoC infrastructure. Towards this aim, we first identify and explore some limitations in the existing recursive-calculus-based approaches to compute the Worst-Case Traversal Time (WCTT) of a packet. Then, we extend the existing model by integrating the characteristics of the tasks that generate the packets. For this extended model, we propose an algorithm called “Branch and Prune” (BP). Our proposed method provides tighter and safe estimates than the existing recursive-calculus-based approaches. Finally, we introduce a more general approach, namely “Branch, Prune and Collapse” (BPC) which offers a configurable parameter that provides a flexible trade-off between the computational complexity and the tightness of the computed estimate. The recursive-calculus methods and BP present two special cases of BPC when a trade-off parameter is 1 or ∞, respectively. Through simulations, we analyze this trade-off, reason about the implications of certain choices, and also provide some case studies to observe the impact of task parameters on the WCTT estimates.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores