956 resultados para BIOLOGIA
Resumo:
Industrial activities are the major sources of pollution in all environments. Depending on the type of industry, various levels of organic and inorganic pollutants are being continuously discharged into the environment. Although, several kinds of physical, chemical, biological or the combination of methods have been proposed and applied to minimize the impact of industrial effluents, few have proved to be totally effective in terms of removal rates of several contaminants, toxicity reduction or amelioration of physical and chemical properties. Hence, it is imperative to develop new and innovative methodologies for industrial wastewater treatment. In this context nanotechnology arises announcing the offer of new possibilities for the treatment of wastewaters mainly based on the enhanced physical and chemical proprieties of nanomaterials (NMs), which can remarkably increase their adsorption and oxidation potential. Although applications of NMs may bring benefits, their widespread use will also contribute for their introduction into the environment and concerns have been raised about the intentional use of these materials. Further, the same properties that make NMs so appealing can also be responsible for producing ecotoxicological effects. In a first stage, with the objective of selecting NMs for the treatment of organic and inorganic effluents we first assessed the potential toxicity of nanoparticles of nickel oxide (NiO) with two different sizes (100 and 10-20 nm), titanium dioxide (TiO2, < 25 nm) and iron oxide (Fe2O3, ≈ 85x425 nm). The ecotoxicological assessment was performed with a battery of assays using aquatic organisms from different trophic levels. Since TiO2 and Fe2O3 were the NMs that presented lower risks to the aquatic systems, they were selected for the second stage of this work. Thus, the two NMs pre-selected were tested for the treatment of olive mill wastewater (OMW). They were used as catalyst in photodegradation systems (TiO2/UV, Fe2O3/UV, TiO2/H2O2/UV and Fe2O3/H2O2/UV). The treatments with TiO2 or Fe2O3 combined with H2O2 were the most efficient in ameliorating some chemical properties of the effluent. Regarding the toxicity to V. fischeri the highest reduction was recorded for the H2O2/UV system, without NMs. Afterwards a sequential treatment using photocatalytic oxidation with NMs and degradation with white-rot fungi was applied to OMW. This new approach increased the reduction of chemical oxygen demand, phenolic content and ecotoxicity to V. fischeri. However, no reduction in color and aromatic compounds was achieved after 21 days of biological treatment. The photodegradation systems were also applied to treat the kraft pulp mill and mining effluents. For the organic effluent the combination NMs and H2O2 had the best performances in reduction the chemical parameters as well in terms of toxicity reduction. However, for the mine effluent the best (TiO2/UV and Fe2O3/UV) were only able to significantly remove three metals (Zn, Al and Cd). Nonetheless the treatments were able of reducing the toxicity of the effluent. As a final stage, the toxicity of solid wastes formed during wastewater treatment with NMs was assessed with Chironomus riparius larvae, a representative species of the sediment compartment. Certain solid wastes showed the potential to negatively affect C. riparius survival and growth, depending on the type of effluent treated. This work also brings new insights to the use of NMs for the treatment of industrial wastewaters. Although some potential applications have been announced, many evaluations have to be performed before the upscaling of the chemical treatments with NMs.
Resumo:
Although the genetic code is generally viewed as immutable, alterations to its standard form occur in the three domains of life. A remarkable alteration to the standard genetic code occurs in many fungi of the Saccharomycotina CTG clade where the Leucine CUG codon has been reassigned to Serine by a novel transfer RNA (Ser-tRNACAG). The host laboratory made a major breakthrough by reversing this atypical genetic code alteration in the human pathogen Candida albicans using a combination of tRNA engineering, gene recombination and forced evolution. These results raised the hypothesis that synthetic codon ambiguities combined with experimental evolution may release codons from their frozen state. In this thesis we tested this hypothesis using S. cerevisiae as a model system. We generated ambiguity at specific codons in a two-step approach, involving deletion of tRNA genes followed by expression of non-cognate tRNAs that are able to compensate the deleted tRNA. Driven by the notion that rare codons are more susceptible to reassignment than those that are frequently used, we used two deletion strains where there is no cognate tRNA to decode the rare CUC-Leu codon and AGG-Arg codon. We exploited the vulnerability of the latter by engineering mutant tRNAs that misincorporate Ser at these sites. These recombinant strains were evolved over time using experimental evolution. Although there was a strong negative impact on the growth rate of strains expressing mutant tRNAs at high level, such expression at low level had little effect on cell fitness. We found that not only codon ambiguity, but also destabilization of the endogenous tRNA pool has a strong negative impact in growth rate. After evolution, strains expressing the mutant tRNA at high level recovered significantly in several growth parameters, showing that these strains adapt and exhibit higher tolerance to codon ambiguity. A fluorescent reporter system allowing the monitoring of Ser misincorporation showed that serine was indeed incorporated and possibly codon reassignment was achieved. Beside the overall negative consequences of codon ambiguity, we demonstrated that codons that tolerate the loss of their cognate tRNA can also tolerate high Ser misincorporation. This raises the hypothesis that these codons can be reassigned to standard and eventually to new amino acids for the production of proteins with novel properties, contributing to the field of synthetic biology and biotechnology.
Resumo:
Marine sponges harbor microbial communities of immense ecological and biotechnological importance. Recently, they have been focus of heightened attention due to the wide range of biologically active compounds with potential application, particularly, in chemical, cosmetic and pharmaceutical industries. However, we still lack fundamental knowledge of their microbial ecology and biotechnological potential. The development of high-throughput sequencing technologies has given rise to a new range of tools that can help us explore the biotechnological potential of sponges with incredible detail. Metagenomics, in particular, has the power to revolutionize the production of bioactive compounds produced by unculturable microorganisms. It can offer the identification of biosynthetic genes or gene clusters that can be heterologously expressed on a cultivable and suitable host. This review focus on the exploration of the biotechnological potential of sponge-associated microorganisms, and integration of molecular approaches, whose increasing efficiency can play an essential role on achieving a sustainable source of natural products.
Resumo:
Cell cycle and differentiation are two highly coordinated processes during organ development. Recent studies have demonstrated that core cell cycle regulators also play cell cycle-independent functions in post-mitotic neurons, and are essential for the maintenance of neuronal homeostasis. CDC25 phosphatases are well-established CDK activators and their activity is mainly associated to proliferating tissues. The expression and activity of mammalian CDC25s has been reported in adult brains. However, their physiological relevance and the potential substrates in a non-proliferative context have never been addressed. string (stg) encodes the Drosophila CDC25 homolog. Previous studies from our group showed that stg is expressed in photoreceptors (PRs) and in lamina neurons, which are two differentiated cell types that compose the fly visual system. The aims of this work are to uncover the function of stg and to identify its potential neuronal substrates, using the Drosophila visual system as a model. To gain insight into the function of stg in a non-dividing context we used the GAL4/UAS system to promote downregulation of stg in PR-neurons, through the use of an RNAi transgene. The defects caused by stg loss-of-function were evaluated in the developing eye imaginal disc by immunofluorescence, and during adult stages by scanning electron microscopy. This genetic approach was combined with a specific proteomic method, two-dimensional difference gel electrophoresis (2D-DIGE), to identify the potential substrates in PR-cells. Our results showed that stg downregulation in PRs affects the well-patterned retina organization, inducing the loss of apical maintenance of PR-nuclei on the eye disc, and ommatidia disorganization. We also detected an abnormal accumulation of cytoskeletal proteins and a disruption of the axon structure. As a consequence, the projection of PR-axons into the lamina and medulla neuropils of the optic lobe was impaired. Upon stg downregulation, we also detected that PR-cells accumulate Cyclin B. Although the rough eye phenotype observed upon stg downregulation suggests neurodegeneration, we did not detect neuronal death during larval stages, suggesting that it likely occurs during pupal stages or during adulthood. By 2D-DIGE, we identified seven proteins which were differentially expressed upon stg downregulation, and are potential neuronal substrates of Stg. Altogether, our observations suggest that Stg phosphatase plays an essential role in the Drosophila visual system neurons, regulating several cell components and processes in order to ensure their homeostasis.
Resumo:
Staphylococcus aureus are Gram-positive bacteria who integrate the human microbiota. Nevertheless, these bacteria can be pathogenic to the humans. Due to the increasing occurrence of antibiotic-resistant S. aureus new approaches to control this pathogen are necessary. The antimicrobial photodynamic inactivation process (PDI) is based in the combined use of a light source, an oxidizing agent like oxygen and an intermediary agent (a photosensitizer). These three components interact to form cytotoxic reactive oxygen species that irreversibly damage vital constituents of the microbial cells and ultimately lead to cell death. In fact, PDI is being shown to be a promising alternative to the antibiotic approach in the inactivation of pathogenic microorganisms. However, information on effects of photosensitization on particular virulence factors is strikingly scarce. The objective of this work was to evaluate the effect of PDI on virulence factors of S. aureus. For this, as photosensitizer the 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphyrin tetra-iodide (Tetra-Py+-Me) and six strains of S. aureus (one reference strain, one strain with 1 enterotoxin, two strains with 3 enterotoxins and two strains resistant to methicillin, MRSA – one with 5 enterotoxins and the other without enterotoxins) were used. The effect of photosensitization on catalase activity, beta hemolysis, lipases, thermonuclease, enterotoxins, coagulase production and resistance to methicillin was assessed. The results indicate that the expression of some virulence factors in the cells subjected to this therapy is affected. Additionally the susceptibility of the strains to PDI did not decrease upon successive treatments.
Estudo da variação da abundância e diversidade de procariotas em sedimentos subsuperficiais marinhos
Resumo:
Os sedimentos marinhos subsuperficiais profundos são, atualmente, um ambiente ainda pouco conhecido do ponto de vista microbiológico, nomeadamente quanto aos processos metabólicos que nele têm lugar e quanto à sua possível influência nos ciclos biogeoquímicos. O acesso a amostras colhidas em sedimentos profundos, particularmente no âmbito dos programas IODP (International Ocean Discovery Program) e ECORD (European Consortium for Ocean Research Drilling) tem permitido recolher informação sobre a estrutura das comunidades de procariotas bem como sobre alguns dos fatores que regulam a sua distribuição e atividade. Este estudo teve como objetivo caracterizar a distribuição e a diversidade estrutural das comunidades de procariotas em sedimentos subsuperficiais profundos colhidos no Arco Izu-Bonin-Mariana, no mar das Filipinas, com recurso a métodos independentes de cultivo (PCR-DGGE) e à contagem de células por microscopia de epifluorescência. Os resultados apontam para a existência de comunidades de Bacteria e Archaea diversas. Os valores do índice de diversidade de Shannon-Weaver (H’) calculados com base nos perfis de DGGE (Bacteria) foram significativamente mais elevados (3,035 – 1,971) nas camadas superficiais (< 140 mafm) do que nos sedimentos (2,519 - 1,049) correspondentes a profundidades superiores entre 163 e 879 mafm. A abundância máxima (8,66 x 106 células.gps-1) foi registada à profundidade de 67 mafm e valor mínimo (2,26 x 106 células.gps-1) foi observado em amostras colhidas a 879 mafm de profundidade. Abundância e diversidade apresentaram correlação negativa com a profundidade e com o teor de sulfato. Os resultados indicam que ao longo da coluna de sedimento se estabelecem comunidades de procariotas estruturalmente diferentes e adaptadas ao ambiente geoquímico prevalecente, nomeadamente em termos dos aceitadores de eletrões disponíveis. O estudo do microbioma destas amostras representativas do ambiente sedimentar subsuperficial profundo será continuado e detalhado, com recurso a técnicas de sequenciação avançada.
Resumo:
Cationic porphyrins have been widely used as photosensitizers (PSs) in the inactivation of microorganisms, both in biofilms and in planktonic forms. However, the application of curcumin, a natural PS, in the inactivation of biofilms, is poorly studied. The objectives of this study were (1) to evaluate and compare the efficiency of a cationic porphyrin tetra (Tetra-Py+-Me) and curcumin in the photodynamic inactivation of biofilms of Pseudomonas spp and the corresponding planktonic form; (2) to evaluate the effect of these PSs in cell adhesion and biofilm maturation. In eradication assays, biofilms of Pseudomonas spp adherent to silicone tubes were subjected to irradiation with white light (180 J cm-2) in presence of different concentrations (5 and 10 μM) of PS. In colonization experiments, solid supports were immersed in cell suspensions, PS was added and the mixture experimental setup was irradiated (864 J cm-2) during the adhesion phase. After transference solid supports to new PS-containing medium, irradiation (2592 J cm-2) was resumed during biofilm maturation. The assays of inactivation of planktonic cells were conducted in cell suspensions added of PS concentrations equivalent to those used in experiments with biofilms. The inactivation of planktonic cells and biofilms (eradication and colonization assays) was assessed by quantification of viable cells after plating in solid medium, at the beginning and at the end of the experiments. The results show that porphyrin Tetra-Py+-Me effectively inactivated planktonic cells (3.7 and 3.0 log) and biofilms of Pseudomonas spp (3.2 and 3.6 log). In colonization assays, the adhesion of cells was attenuated in 2.2 log, and during the maturation phase, a 5.2 log reduction in the concentration of viable cells was observed. Curcumin failed to cause significant inactivation in planktonic cells (0.7 and 0.9 log) and for that reason it was not tested in biofilm eradication assays. In colonization assays, curcumin did not affect the adhesion of cells to the solid support and caused a very modest reduction (1.0 log) in the concentration of viable cells during the maturation phase. The results confirm that the photodynamic inactivation is a promising strategy to control installed biofilms and in preventing colonization. Curcumin, however, does not represent an advantageous alternative to porphyrins in the case of biofilms of Pseudomonas spp.
Resumo:
Deep-sea resources have been increasingly exploited, and due to that, several ecosystems and species have been considerably affected. Deep-water sharks populations have been of the most disturbed by practices of unselected fisheries, bycatch and discard, mainly due to their low commercial value. Those practices make deep-water sharks very vulnerable to overfishing given their life-history traits, increasing their extinction risk. With the prohibition of the direct fishery, and implementation of quotas and TACs (Total Allowable Catches) regarding the deep-sea shark landings, the official landings have dramatically decreased after the 1990s. However, the IUU (Illegal, unreported and unregulated) catch has exponentially increased. With the analysis of catch per unit effort (CPUE), the depths, and the mean weight of the individuals over the years for each one of the nine most caught species in the Azores, we produced a descriptive analysis of the effect of fisheries in those species. The results show that some of these species have been suffering from a great fishing pressure, and their populations will be greatly affected in the near future if drastic measures are not taken when it comes to managing their long term sustainability.
Resumo:
Diplodia corticola is regarded as the most virulent fungus involved in cork oak decline, being able to infect not only Quercus species (mainly Q. suber and Q. ilex), but also grapevines (Vitis vinifera) and eucalypts (Eucalyptus sp.). This endophytic fungus is also a pathogen whose virulence usually manifests with the onset of plant stress. Considering that the infection normally culminates in host death, there is a growing ecologic and socio-economic concern about D. corticola propagation. The molecular mechanisms of infection are hitherto largely unknown. Accordingly, the aim of this study was to unveil potential virulence effectors implicated in D. corticola infection. This knowledge is fundamental to outline the molecular framework that permits the fungal invasion and proliferation in plant hosts, causing disease. Since the effectors deployed are mostly proteins, we adopted a proteomic approach. We performed in planta pathogenicity tests to select two D. corticola strains with distinct virulence degrees for our studies. Like other filamentous fungi D. corticola secretes protein at low concentrations in vitro in the presence of high levels of polysaccharides, two characteristics that hamper the fungal secretome analysis. Therefore, we first compared several methods of extracellular protein extraction to assess their performance and compatibility with 1D and 2D electrophoretic separation. TCA-Acetone and TCA-phenol protein precipitation were the most efficient methods and the former was adopted for further studies. The proteins were extracted and separated by 2D-PAGE, proteins were digested with trypsin and the resulting peptides were further analysed by MS/MS. Their identification was performed by de novo sequencing and/or MASCOT search. We were able to identify 80 extracellular and 162 intracellular proteins, a milestone for the Botryosphaeriaceae family that contains only one member with the proteome characterized. We also performed an extensive comparative 2D gel analysis to highlight the differentially expressed proteins during the host mimicry. Moreover, we compared the protein profiles of the two strains with different degrees of virulence. In short, we characterized for the first time the secretome and proteome of D. corticola. The obtained results contribute to the elucidation of some aspects of the biology of the fungus. The avirulent strain contains an assortment of proteins that facilitate the adaptation to diverse substrates and the identified proteins suggest that the fungus degrades the host tissues through Fenton reactions. On the other hand, the virulent strain seems to have adapted its secretome to the host characteristics. Furthermore, the results indicate that this strain metabolizes aminobutyric acid, a molecule that might be the triggering factor of the transition from a latent to a pathogenic state. Lastly, the secretome includes potential pathogenicity effectors, such as deuterolysin (peptidase M35) and cerato-platanin, proteins that might play an active role in the phytopathogenic lifestyle of the fungus. Overall, our results suggest that D. corticola has a hemibiotrophic lifestyle, switching from a biotrophic to a necrotrophic interaction after plant physiologic disturbances.This understanding is essential for further development of effective plant protection measures.
Resumo:
Candida albicans is the major fungal pathogen in humans, causing diseases ranging from mild skin infections to severe systemic infections in immunocompromised individuals. The pathogenic nature of this organism is mostly due to its capacity to proliferate in numerous body sites and to its ability to adapt to drastic changes in the environment. Candida albicans exhibit a unique translational system, decoding the leucine-CUG codon ambiguously as leucine (3% of codons) and serine (97%) using a hybrid serine tRNA (tRNACAGSer). This tRNACAGSer is aminoacylated by two aminoacyl tRNA synthetases (aaRSs): leucyl-tRNA synthetase (LeuRS) and seryl-tRNA synthetase (SerRS). Previous studies showed that exposure of C. albicans to macrophages, oxidative, pH stress and antifungals increases Leu misincorporation levels from 3% to 15%, suggesting that C. albicans has the ability to regulate mistranslation levels in response to host defenses, antifungals and environmental stresses. Therefore, the hypothesis tested in this work is that Leu and Ser misincorporation at CUG codons is dependent upon competition between the LeuRS and SerRS for the tRNACAGSer. To test this hypothesis, levels of the SerRS and LeuRS were indirectly quantified under different physiological conditions, using a fluorescent reporter system that measures the activity of the respective promoters. Results suggest that an increase in Leu misincorporation at CUG codons is associated with an increase in LeuRS expression, with levels of SerRS being maintained. In the second part of the work, the objective was to identify putative regulators of SerRS and LeuRS expression. To accomplish this goal, C. albicans strains from a transcription factor knock-out collection were transformed with the fluorescent reporter system and expression of both aaRSs was quantified. Alterations in the LeuRS/SerRS expression of mutant strains compared to wild type strain allowed the identification of 5 transcription factors as possible regulators of expression of LeuRS and SerRS: ASH1, HAP2, HAP3, RTG3 and STB5. Globally, this work provides the first step to elucidate the molecular mechanism of regulation of mistranslation in C. albicans.
Resumo:
As alterações climáticas emergentes têm um grande impacto no crescimento e desenvolvimento de espécies florestais, nomeadamente em espécies de valor industrial e medicinal, como é o caso do eucalipto (Eucalyptus globulus) e da moringa (Moringa oleifera). Assim, é urgente conhecer as respostas fisiológicas e entender as variações que ocorrem nos perfis metabólicos de espécies vegetais. Neste trabalho, plantas jovens de Eucalyptus globulus foram expostas a radiação UVB (12kJ/m2) e foram avaliadas as respostas fisiológicas e o perfil metabólico, um e onze dias após a aplicação da radiação. A dose de UVB usada não afetou as reações fotoquímicas nem as trocas gasosas, contudo ao nível do metabolismo do carbono (AST e amido) e do conteúdo de pigmentos verificaram-se pequenas alterações (AST e pigmentos). Através da análise do perfil metabólico de E. globulus foram encontrados compostos voláteis e semi-voláteis pertencentes às famílias dos terpenos, sesquiterpenos e aldeídos. Em geral, os sesquiterpenos e os álcoois monoterpénicos apresentaram uma tendência para manter e, em alguns casos, diminuir com o stress, enquanto que o grupos dos aldeídos aumentou e os monoterpenos apresentaram um comportamento mais heterogéneo. O E. globulus mostrou ser uma espécie tolerante à aplicação da dose de UVB usada neste trabalho. Por outro lado, plantas jovens de M. oleifera foram expostas a défice hídrico (DH). Um grupo de plantas foi recolhido um dia após o final da exposição e o outro grupo após onze dias do final da exposição. Foi avaliado o perfil metabólico desta espécie através de GC/MS. Os dados cromatográficos indicaram que em condições de stress (DH(1) e DH(11)), as quantidades de compostos associados a vias primárias e secundárias de defesa (como os alcanos, álcoois, ácidos carboxílicos, esteróis, aminoácidos e açucares) sofreram algumas alterações. As plantas analisadas 11 dias após a remoção do stress mostraram maiores variações do perfil de metabolitos. No entanto, tanto um como onze dias após a remoção do stress, as plantas apresentaram a formação de novos rebentos. Apesar do perfil de metabolitos ter sofrido algumas alterações, por não se registarem casos de morte, conclui-se que as plantas de moringa mostraram ser tolerantes aos tratamentos aplicados.
Resumo:
Dissertação de Mestrado, Biologia Marinha, Especialização em Pescas e Aquacultura, Faculdade de Ciências do Mar e do Ambiente, Universidade do Algarve, 2008
Resumo:
Dissertação mest., Biologia Marinha, Universidade do Algarve, 2009
Resumo:
Dissesrtação de Mestrado, Biologia Marinha, Especialização em Pescas e Aquacultura, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2009
Resumo:
Dissertação mest., Biologia Marinha, Universidade do Algarve, 2008