904 resultados para BARRIER-LAYER
Resumo:
The ability of neural networks to realize some complex nonlinear function makes them attractive for system identification. This paper describes a novel barrier method using artificial neural networks to solve robust parameter estimation problems for nonlinear model with unknown-but-bounded errors and uncertainties. This problem can be represented by a typical constrained optimization problem. More specifically, a modified Hopfield network is developed and its internal parameters are computed using the valid-subspace technique. These parameters guarantee the network convergence to the equilibrium points. A solution for the robust estimation problem with unknown-but-bounded error corresponds to an equilibrium point of the network. Simulation results are presented as an illustration of the proposed approach.
Resumo:
SnO2 deposited by sol-gel is a polycrystalline film with small grain size. Oxygen present at a less grain boundary traps electrons and then the depletion layer around the potential barrier of the grain boundary becomes wider, comparable to the grain size. We have modeled the conductivity taking into account the trapped charge at the depletion layer of the grain boundary and other scattering mechanisms such as ionized impurity and polar optical. Experimental data of photoconductivity of SnO2 sol-gel films are simulated considering the dominant scattering at grain boundary and crystallite bulk. The fraction of trapped charge at the grain boundary depends on temperature and wavelength of irradiating light, being as high as 50% for illumination in the range 500-600 nm for SnO2-2%Nb as grown sample annealed in air to 550°C. This fraction can be quite reduced depending on exposure to light and annealing under different oxygen partial pressure conditions.
Resumo:
Surface-relief gratings are photoinscribed on ionically adsorbed layer-by-layer (LBL) films of an azodye, Brilliant Yellow (BY), which was layered alternately with a polyelectrolyte. Photoinscription is performed by impinging an interference pattern of p- or s-polarized laser light with moderate intensity onto the LBL film, which is unlikely to cause thermal effects. Large-scale mass transport occurs due to the force associated with the field gradient of the light pattern. The ionic interactions between adjacent layers appear to provide the means for the chromophores to drag the polymer chains upon photoizomerization. LBL films were produced from two different polyelectrolytes and under two distinct pH values leading to markedly different film properties especially concerning photodegradation. Exposure to the laser light, for instance, leads to higher photodegradation in the poly(dimethyl diallylammonium chloride)/BY system, in comparison to the poly(allylamine hydrochloride)/BY films. Mass transport in the latter case is predominantly light-driven, which is consistent with the higher amplitude of modulation for p-polarized light (70 nm) compared to that caused by s-polarized light (18 nm). © 2003 Elsevier Ltd. All rights reserved.
Resumo:
The purpose of this study was to compare the removal of root surface smear layer following active application of EDTA gel and EDTA-T (texapon) gel in different concentrations (5%, 10%, 15%, 20% and 24%), using scanning electron microscopy. A total of 220 dentin blocks obtained from the root surfaces of extracted teeth were divided into 3 groups: Group I - (control) application of saline solution (n = 20); Group II - EDTA gel (pH 7.0) was applied in the following concentrations: 5%, 10%, 15%, 20% and 24% (n = 100); Group III - EDTA-T gel (pH 7.0) applied in the same concentrations described above (n = 100). The photomicrographs were evaluated by one calibrated examiner using a smear layer removal index and following statistical analysis (Kruskal-Wallis test). The results demonstrated that the specimens treated with EDTA and EDTA-T gel presented a better smear layer removal than the control group (p < 0.01); no statistically significant differences were observed between the EDTA and EDTA-T groups and between the concentrations tested (Mann-Whitney, p > 0.05). Within the limits of this study, it can be concluded that all treatment modalities effectively removed the smear layer from the root surface. The addition of texapon into the EDTA gel formulation did not increase its effectiveness.
Resumo:
The purpose of this study was to carry out a scanning electron microscopic (SEM) analysis of the cleaning qualities and smear layer removal from root canal walls, instrumented and irrigated with 2.5% NaOCl, 2.0% chlorhexidine and saline solutions. Fifty extracted teeth were used in this study. All teeth were radiographed to determine the existence of a single canal. The crowns were cut at the cervical limit and the root canals were instrumented with K-type files up to size 45. During root canal preparation, irrigations were made with the different solutions being evaluated: Group 1: 2.5% NaOCl (10 roots); Group 2: 2.5% NaOCl and 17% EDTA for 2 minute (10 roots); Group 3: 2.0% chlorhexidine (10 roots); Group 4: 2.0% chlorhexidine and 17% EDTA for 2 minutes (10 roots); Group 5: saline solution (5 roots); Group 6: saline solution and 17% EDTA for 2 minutes (5 roots). After instrumentation, the canals were irrigated with each one of the solutions and the roots were cut in the buccolingual direction for SEM analysis, at the cervical, middle and apical thirds, to ascertain the presence or absence of smear layer and debris. SEM analysis was performed by three calibrated examiners and scores were submitted to Kruskal-Wallis test at the significance level of p = 5%. Results showed that the use of 17% EDTA decreased the smear layer significantly (p < 0.05) for all evaluated solutions in all thirds. When EDTA was not used, a significantly higher quantity of smear layer on the apical third was observed only in the NaOCl groups. The use of 17% EDTA was significant for debris removal except for the chlorhexidine groups. The following conclusion could be drawn: the use of 17% EDTA was necessary to enhance cleanness of the root canals.
Resumo:
In this paper is presented a new approach for optimal power flow problem. This approach is based on the modified barrier function and the primal-dual logarithmic barrier method. A Lagrangian function is associated with the modified problem. The first-order necessary conditions for optimality are fulfilled by Newton's method, and by updating the barrier terms. The effectiveness of the proposed approach has been examined by solving the Brazilian 53-bus, IEEE118-bus and IEEE162-bus systems.
Influence of natural fruit juices in removing the smear layer from root surfaces - An in vitro study
Resumo:
Certain elements of a patient's diet may be associated with dentin hypersensitivity. The intent of this study was to evaluate the degree of removal of the smear layer from dentin surfaces by various fruit juices. A smear layer was created on extracted human teeth by manual scaling. The roots were reduced and distributed into 8 experimental groups. Distilled water was the negative control. The juices were applied by 2 methods: topical application and topical application with friction. Specimens were photomicrographed and graded according to an index of smear layer removal. With topical application, all but 2 of the tested substances resulted in significantly greater removal of the smear layer and opening of dentinal tubules than was the case with the negative control (p = 0.05); the exceptions were Gala apple and Italian grape juices, which were no different from the control. For the active application (with friction), most substances removed more smear layer than the control (p < 0.05); Gala apple, Italian grape and orange juices were similar to the control. For each of the tested substances, removal of the smear layer did not differ with the method of application (topical vs. friction; p > 0.05). It is concluded that natural fruit juices can remove the smear layer from dentin surfaces, and the efficacy of this removal varies with the type of juice. © J Can Dent Assoc 2004.
Resumo:
Objective: The purpose of this in vitro study was to investigate the efficacy of EDTA gel preparation, associated with texapon detergent (EDTA-T), for removing the smear layer at human root surfaces. Method and materials: An experimental smear layer was produced by scaling using periodontal curettes, and the root surfaces were etched with the following concentrations of EDTA-T: 5%, 10%, 15%, 20%, 24%, and negative control (saline solution) for 1, 2, or 3 minutes using both passive and active methods. The surfaces were evaluated by scanning electron microscopy, and photomicrographs were evaluated in relation to smear removal. Results: All EDTA-T groups were more effective than the control group (P < .0001). EDTA-T at 15% was more effective when applied by the passive method, although this difference was not observed for the active method. The active method was statistically better than the passive method (P < .0001). Conclusion: The etching of the root surface with EDTA-T gel by active application, independently of the other factors evaluated, was effective for smear layer removal.
Resumo:
The development of fast, inexpensive, and reliable tests to identify nontuberculous mycobacteria (NTM) is needed. Studies have indicated that the conventional identification procedures, including biochemical assays, are imprecise. This study evaluated a proposed alternative identification method in which 83 NTM isolates, previously identified by conventional biochemical testing and in-house M. avium IS1245-PCR amplification, were submitted to the following tests: thin-layer chromatography (TLC) of mycolic acids and PCR-restriction enzyme analysis of hsp65 (PRA). High-performance liquid chromatography (HPLC) analysis of mycolic acids and Southern blot analysis for M. avium IS1245 were performed on the strains that evidenced discrepancies on either of the above tests. Sixty-eight out of 83 (82%) isolates were concordantly identified by the presence of IS1245 and PRA and by TLC mycolic acid analysis. Discrepant results were found between the phenotypic and molecular tests in 12/83 (14.4%) isolates. Most of these strains were isolated from non-sterile body sites and were most probably colonizing in the host tissue. While TLC patterns suggested the presence of polymycobacterial infection in 3/83 (3.6%) cultures, this was the case in only one HPLC-tested culture and in none of those tested by PRA. The results of this study indicated that, as a phenotypic identification procedure, TLC mycolic acid determination could be considered a relatively simple and cost-effective method for routine screening of NTM isolates in mycobacteriology laboratory practice with a potential for use in developing countries. Further positive evidence was that this method demonstrated general agreement on MAC and M. simiae identification, including in the mixed cultures that predominated in the isolates of the disseminated infections in the AIDS patients under study. In view of the fact that the same treatment regimen is recommended for infections caused by these two species, TLC mycolic acid analysis may be a useful identification tool wherever molecular methods are unaffordable.
Resumo:
The methacrylic copolymer functionalized with the azo chromophore 4-[N-ethyl-N-(2-hydroxiethyl)]-amino-2′-chloro-4-nitroazobenzene (MMADR13), in its polyelectrolyte form, can be used to fabricate thin films by the layer-by-layer (LbL) technique just if one alternates this anionic polyelectrolyte with a cationic polyelectrolyte such as poly(allylamine hydrochloride) (PAH). Since PAH does not present any particular optical functionality, the main final film feature will came from the side chain DR13 azo-chromophore group due to its large nonlinear optical properties and photoisomerization capabilities. This work reports the electrooptic activity of MMADR13/DR13 LBL films, which arises from the high hiperpolarizability about the azo side chain group.
Resumo:
Objective: The purpose of this study was to histologically analyze the influence of bioactive glass and/or a calcium sulfate barrier on bone healing in surgically created defects in rat tibias. Material and methods: Sixty-four rats were divided into 4 groups: C (control), CS (calcium sulfate), BG (bioactive glass), and BG/CS (bioactive glass/calcium sulfate). A surgical defect was created in the tibia of each animal. In Group CS, a calcium sulfate barrier was placed to cover the defect. In Group BG the defect was filled with bioactive glass. In Group BG/CS, it was filled with bioactive glass and protected by a barrier of calcium sulfate. Animals were sacrificed at 10 or 30 days post-operative. The formation of new bone in the cortical area of the defect was evaluated histomorphometrically. Results: At 10 days post-operative, Group C presented significantly more bone formation than Groups CS, BG, or BG/CS. No statistically significant differences were found between the experimental groups. At 30 days post-operative, Group C demonstrated significantly more bone formation than the experimental groups. Groups CS and BG/CS showed significantly more bone formation than Group BG. No statistically significant differences were found between Group CS and BG/CS. Conclusions: (a) the control groups had significantly more bone formation than the experimental groups; (b) at 10 days post-operative, no significant differences were found between any of the experimental groups; and (c) at 30 days post-operative, the groups with a calcium sulfate barrier had significantly more bone formation than the group that used bioactive glass only. Copyright © Blackwell Munksgaard 2005.
Resumo:
The protection efficiency against water corrosion of fluorozirconate glass, ZBLAN, dip-coated by nanocrystalline tin oxide film containing the organic molecule Tiron® was investigated by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The chemical bonding structure of the surface region and morphology were studied before and after two water exposure periods of 5 and 30 min. The results of the analysis for the as-grown sample revealed a SnO1.6 phase containing carbon and sulfur, related to Tiron®, and traces of elements related to ZBLAN (Zr, F, Ba). This fact and the clear evidence of the presence of tin oxifluoride specie (SnOxF y) indicates a diffusion of the glass components into the porous coating. After water exposure, the increase of the oxygen concentration accompanied by a strong increase of Zr, F, Ba and Na content is interpreted as filling of the nanopores of the film by glass compounds. The formation of a compact protective layer is supported by the morphological changes observed by AFM. © 2005 Elsevier B.V. All rights reserved.
Resumo:
Background: The purpose of this study was to histologically evaluate the healing of surgically created Class II furcation defects treated using an autogenous bone (AB) graft with or without a calcium sulfate (CS) barrier. Methods: The second, third, and fourth mandibular premolars (P2, P3, and P4) of six mongrel dogs were used in this study. Class II furcation defects (5 mm in height × 2 mm in depth) were surgically created and immediately treated. Teeth were randomly divided into three groups: group C (control), in which the defect was filled with blood clot; group AB, in which the defect was filled with AB graft; and group AB/CS, in which the defect was filled with AB graft and covered by a CS barrier. Elaps were repositioned to cover all defects. The animals were euthanized 90 days post-surgery. Mesio-distal serial sections were obtained and stained with either hematoxylin and eosin or Masson's trichrome. Histometric, using image-analysis software, and histologic analyses were performed. Linear and area measurements of periodontal healing were evaluated and calculated as a percentage of the original defect. Percentage data were transformed into arccosine for statistical analysis (analysis of variance; P<0.05). Results: Periodontal regeneration in the three groups was similar. Regeneration of bone and connective tissue in the furcation defects was incomplete in most of the specimens. Statistically significant differences were not found in any of the evaluated parameters among the groups. Conclusion: Periodontal healing was similar using surgical debridement alone, AB graft, or AB graft with a CS barrier in the treatment of Class II furcation defects.
Resumo:
The aim of this work is to study the local impact on the upper troposphere/lower stratosphere air composition of an extreme deep convective system. For this purpose, we performed a simulation of a convective cluster composed of many individual deep convective cells that occurred near Bauru (Brazil). The simulation is performed using the 3-D mesoscale model RAMS coupled on-line with a chemistry model. The comparisons with meteorological measurements show that the model produces meteorological fields generally consistent with the observations. The present paper (part I) is devoted to the analysis of the ozone precursors (CO, NO x and non-methane volatile organic compounds) and HO x in the UTLS. The simulation results show that the distribution of CO with altitude is closely related to the upward convective motions and consecutive outflow at the top of the convective cells leading to a bulge of CO between 7 km altitude and the tropopause (around 17km altitude). The model results for CO are consistent with satellite-borne measurements at 700 hPa. The simulation also indicates enhanced amounts of NO x up to 2 ppbv in the 7-17 km altitude layer mainly produced by the lightning associated with the intense convective activity. For insoluble non-methane volatile organic compounds, the convective activity tends to significantly increase their amount in the 7-17km layer by dynamical effects. During daytime in the presence of lightning NO x, this bulge is largely reduced in the upper part of the layer for reactive species (e.g. isoprene, ethene) because of their reactions with OH that is increased on average during daytime. Lightning NO x also impacts on the oxydizing capacity of the upper troposphere by reducing on average HO x, HO 2, H 2O 2 and organic hydroperoxides. During the simulation time, the impact of convection on the air composition of the lower stratosphere is negligible for all ozone precursors although several of the simulated convective cells nearly reach the tropopause. There is no significant transport from the upper troposphere to the lower stratosphere, the isentropic barrier not being crossed by convection. The impact of the increase of ozone precursors and HO x in the upper troposphere on the ozone budget in the LS is discussed in part II of this series of papers.
Resumo:
Host-derived proteases have been reported to degrade the collagen matrix of incompletely-resin-infiltrated dentin. This study tested the hypothesis that interfacial degradation of resin-dentin bonds may be prevented or delayed by the application of chlorhexidine (CHX), a matrix metalloproteinase inhibitor, to dentin after phosphoric acid-etching. Contralateral pairs of resin-bonded Class I restorations in non-carious third molars were kept under intra-oral function for 14 months. Preservation of resin-dentin bonds was assessed by microtensile bond strength tests and TEM examination. In vivo bond strength remained stable in the CHX-treated specimens, while bond strength decreased significantly in control teeth. Resin-infiltrated dentin in CHX-treated specimens exhibited normal structural integrity of the collagen network. Conversely, progressive disintegration of the fibrillar network was identified in control specimens. Auto-degradation of collagen matrices can occur in resin-infiltrated dentin, but may be prevented by the application of a synthetic protease inhibitor, such as chlorhexidine.