897 resultados para Automatic segmentation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND The aim of this study was to evaluate imaging-based response to standardized neoadjuvant chemotherapy (NACT) regimen by dynamic contrast-enhanced magnetic resonance mammography (DCE-MRM), whereas MR images were analyzed by an automatic computer-assisted diagnosis (CAD) system in comparison to visual evaluation. MRI findings were correlated with histopathologic response to NACT and also with the occurrence of metastases in a follow-up analysis. PATIENTS AND METHODS Fifty-four patients with invasive ductal breast carcinomas received two identical MRI examinations (before and after NACT; 1.5T, contrast medium gadoteric acid). Pre-therapeutic images were compared with post-therapeutic examinations by CAD and two blinded human observers, considering morphologic and dynamic MRI parameters as well as tumor size measurements. Imaging-assessed response to NACT was compared with histopathologically verified response. All clinical, histopathologic, and DCE-MRM parameters were correlated with the occurrence of distant metastases. RESULTS Initial and post-initial dynamic parameters significantly changed between pre- and post-therapeutic DCE-MRM. Visually evaluated DCE-MRM revealed sensitivity of 85.7%, specificity of 91.7%, and diagnostic accuracy of 87.0% in evaluating the response to NACT compared to histopathology. CAD analysis led to more false-negative findings (37.0%) compared to visual evaluation (11.1%), resulting in sensitivity of 52.4%, specificity of 100.0%, and diagnostic accuracy of 63.0%. The following dynamic MRI parameters showed significant associations to occurring metastases: Post-initial curve type before NACT (entire lesions, calculated by CAD) and post-initial curve type of the most enhancing tumor parts after NACT (calculated by CAD and manually). CONCLUSIONS In the accurate evaluation of response to neoadjuvant treatment, CAD systems can provide useful additional information due to the high specificity; however, they cannot replace visual imaging evaluation. Besides traditional prognostic factors, contrast medium-induced dynamic MRI parameters reveal significant associations to patient outcome, i.e. occurrence of distant metastases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND A precise detection of volume change allows for better estimating the biological behavior of the lung nodules. Postprocessing tools with automated detection, segmentation, and volumetric analysis of lung nodules may expedite radiological processes and give additional confidence to the radiologists. PURPOSE To compare two different postprocessing software algorithms (LMS Lung, Median Technologies; LungCARE®, Siemens) in CT volumetric measurement and to analyze the effect of soft (B30) and hard reconstruction filter (B70) on automated volume measurement. MATERIAL AND METHODS Between January 2010 and April 2010, 45 patients with a total of 113 pulmonary nodules were included. The CT exam was performed on a 64-row multidetector CT scanner (Somatom Sensation, Siemens, Erlangen, Germany) with the following parameters: collimation, 24x1.2 mm; pitch, 1.15; voltage, 120 kVp; reference tube current-time, 100 mAs. Automated volumetric measurement of each lung nodule was performed with the two different postprocessing algorithms based on two reconstruction filters (B30 and B70). The average relative volume measurement difference (VME%) and the limits of agreement between two methods were used for comparison. RESULTS At soft reconstruction filters the LMS system produced mean nodule volumes that were 34.1% (P < 0.0001) larger than those by LungCARE® system. The VME% was 42.2% with a limit of agreement between -53.9% and 138.4%.The volume measurement with soft filters (B30) was significantly larger than with hard filters (B70); 11.2% for LMS and 1.6% for LungCARE®, respectively (both with P < 0.05). LMS measured greater volumes with both filters, 13.6% for soft and 3.8% for hard filters, respectively (P < 0.01 and P > 0.05). CONCLUSION There is a substantial inter-software (LMS/LungCARE®) as well as intra-software variability (B30/B70) in lung nodule volume measurement; therefore, it is mandatory to use the same equipment with the same reconstruction filter for the follow-up of lung nodule volume.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an application and sample independent method for the automatic discrimination of noise and signal in optical coherence tomography Bscans. The proposed algorithm models the observed noise probabilistically and allows for a dynamic determination of image noise parameters and the choice of appropriate image rendering parameters. This overcomes the observer variability and the need for a priori information about the content of sample images, both of which are challenging to estimate systematically with current systems. As such, our approach has the advantage of automatically determining crucial parameters for evaluating rendered image quality in a systematic and task independent way. We tested our algorithm on data from four different biological and nonbiological samples (index finger, lemon slices, sticky tape, and detector cards) acquired with three different experimental spectral domain optical coherence tomography (OCT) measurement systems including a swept source OCT. The results are compared to parameters determined manually by four experienced OCT users. Overall, our algorithm works reliably regardless of which system and sample are used and estimates noise parameters in all cases within the confidence interval of those found by observers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposed an automated 3D lumbar intervertebral disc (IVD) segmentation strategy from MRI data. Starting from two user supplied landmarks, the geometrical parameters of all lumbar vertebral bodies and intervertebral discs are automatically extracted from a mid-sagittal slice using a graphical model based approach. After that, a three-dimensional (3D) variable-radius soft tube model of the lumbar spine column is built to guide the 3D disc segmentation. The disc segmentation is achieved as a multi-kernel diffeomorphic registration between a 3D template of the disc and the observed MRI data. Experiments on 15 patient data sets showed the robustness and the accuracy of the proposed algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Complete-pelvis segmentation in antero-posterior pelvic radiographs is required to create a patient-specific three-dimensional pelvis model for surgical planning and postoperative assessment in image-free navigation of total hip arthroplasty. Methods A fast and robust framework for accurately segmenting the complete pelvis is presented, consisting of two consecutive modules. In the first module, a three-stage method was developed to delineate the left hemipelvis based on statistical appearance and shape models. To handle complex pelvic structures, anatomy-specific information processing techniques were employed. As the input to the second module, the delineated left hemi-pelvis was then reflected about an estimated symmetry line of the radiograph to initialize the right hemi-pelvis segmentation. The right hemi-pelvis was segmented by the same three-stage method, Results Two experiments conducted on respectively 143 and 40 AP radiographs demonstrated a mean segmentation accuracy of 1.61±0.68 mm. A clinical study to investigate the postoperative assessment of acetabular cup orientations based on the proposed framework revealed an average accuracy of 1.2°±0.9° and 1.6°±1.4° for anteversion and inclination, respectively. Delineation of each radiograph costs less than one minute. Conclusions Despite further validation needed, the preliminary results implied the underlying clinical applicability of the proposed framework for image-free THA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we propose a new method for stitching multiple fluoroscopic images taken by a C-arm instrument. We employ an X-ray radiolucent ruler with numbered graduations while acquiring the images, and the image stitching is based on detecting and matching ruler parts in the images to the corresponding parts of a virtual ruler. To achieve this goal, we first detect the regular spaced graduations on the ruler and the numbers. After graduation labeling, for each image, we have the location and the associated number for every graduation on the ruler. Then, we initialize the panoramic X-ray image with the virtual ruler, and we “paste” each image by aligning the detected ruler part on the original image, to the corresponding part of the virtual ruler on the panoramic image. Our method is based on ruler matching but without the requirement of matching similar feature points in pairwise images, and thus, we do not necessarily require overlap between the images. We tested our method on eight different datasets of X-ray images, including long bones and a complete spine. Qualitative and quantitative experiments show that our method achieves good results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Standard stereotaxic reference systems play a key role in human brain studies. Stereotaxic coordinate systems have also been developed for experimental animals including non-human primates, dogs, and rodents. However, they are lacking for other species being relevant in experimental neuroscience including sheep. Here, we present a spatial, unbiased ovine brain template with tissue probability maps (TPM) that offer a detailed stereotaxic reference frame for anatomical features and localization of brain areas, thereby enabling inter-individual and cross-study comparability. Three-dimensional data sets from healthy adult Merino sheep (Ovis orientalis aries, 12 ewes and 26 neutered rams) were acquired on a 1.5 T Philips MRI using a T1w sequence. Data were averaged by linear and non-linear registration algorithms. Moreover, animals were subjected to detailed brain volume analysis including examinations with respect to body weight (BW), age, and sex. The created T1w brain template provides an appropriate population-averaged ovine brain anatomy in a spatial standard coordinate system. Additionally, TPM for gray (GM) and white (WM) matter as well as cerebrospinal fluid (CSF) classification enabled automatic prior-based tissue segmentation using statistical parametric mapping (SPM). Overall, a positive correlation of GM volume and BW explained about 15% of the variance of GM while a positive correlation between WM and age was found. Absolute tissue volume differences were not detected, indeed ewes showed significantly more GM per bodyweight as compared to neutered rams. The created framework including spatial brain template and TPM represent a useful tool for unbiased automatic image preprocessing and morphological characterization in sheep. Therefore, the reported results may serve as a starting point for further experimental and/or translational research aiming at in vivo analysis in this species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mayer H. Segmentation and segregation patterns of women-owned high-tech firms in four metropolitan regions in the United States, Regional Studies. The number of women starting and owning a business has increased dramatically and female entrepreneurs are entering non-traditional sectors such as high technology, construction and manufacturing. This paper investigates the trends in high-tech entrepreneurship by women in four US metropolitan regions (Silicon Valley, California; Boston, Massachusetts; Washington, DC; and Portland, Oregon). The research examines the sectoral and spatial segmentation patterns of women-owned high-tech firms. Although women are entering non-traditional sectors, the research finds that women entrepreneurs tend to own businesses in female-typed high-tech sectors. In established high-tech regions like Silicon Valley and Boston, male-typed and female-typed women-owned high-tech firms differ significantly in terms of sectoral and spatial segmentation regardless of firm age. While differences between male-typed and female-typed firms are not significant at the regional level for Washington, DC, the analysis shows significant intra-metropolitan differences for the female-typed high-tech firms. The paper concludes that sectoral and spatial segmentation are powerful dynamics that shape business ownership by women in high technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE Quantification of retinal layers using automated segmentation of optical coherence tomography (OCT) images allows for longitudinal studies of retinal and neurological disorders in mice. The purpose of this study was to compare the performance of automated retinal layer segmentation algorithms with data from manual segmentation in mice using the Spectralis OCT. METHODS Spectral domain OCT images from 55 mice from three different mouse strains were analyzed in total. The OCT scans from 22 C57Bl/6, 22 BALBc, and 11 C3A.Cg-Pde6b(+)Prph2(Rd2) /J mice were automatically segmented using three commercially available automated retinal segmentation algorithms and compared to manual segmentation. RESULTS Fully automated segmentation performed well in mice and showed coefficients of variation (CV) of below 5% for the total retinal volume. However, all three automated segmentation algorithms yielded much thicker total retinal thickness values compared to manual segmentation data (P < 0.0001) due to segmentation errors in the basement membrane. CONCLUSIONS Whereas the automated retinal segmentation algorithms performed well for the inner layers, the retinal pigmentation epithelium (RPE) was delineated within the sclera, leading to consistently thicker measurements of the photoreceptor layer and the total retina. TRANSLATIONAL RELEVANCE The introduction of spectral domain OCT allows for accurate imaging of the mouse retina. Exact quantification of retinal layer thicknesses in mice is important to study layers of interest under various pathological conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fast and automatic method for radiocarbon analysis of aerosol samples is presented. This type of analysis requires high number of sample measurements of low carbon masses, but accepts precisions lower than for carbon dating analysis. The method is based on online Trapping CO2 and coupling an elemental analyzer with a MICADAS AMS by means of a gas interface. It gives similar results to a previously validated reference method for the same set of samples. This method is fast and automatic and typically provides uncertainties of 1.5–5% for representative aerosol samples. It proves to be robust and reliable and allows for overnight and unattended measurements. A constant and cross contamination correction is included, which indicates a constant contamination of 1.4 ± 0.2 μg C with 70 ± 7 pMC and a cross contamination of (0.2 ± 0.1)% from the previous sample. A Real-time online coupling version of the method was also investigated. It shows promising results for standard materials with slightly higher uncertainties than the Trapping online approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract: Near-infrared spectroscopy (NIRS) enables the non-invasive measurement of changes in hemodynamics and oxygenation in tissue. Changes in light-coupling due to movement of the subject can cause movement artifacts (MAs) in the recorded signals. Several methods have been developed so far that facilitate the detection and reduction of MAs in the data. However, due to fixed parameter values (e.g., global threshold) none of these methods are perfectly suitable for long-term (i.e., hours) recordings or were not time-effective when applied to large datasets. We aimed to overcome these limitations by automation, i.e., data adaptive thresholding specifically designed for long-term measurements, and by introducing a stable long-term signal reconstruction. Our new technique (“acceleration-based movement artifact reduction algorithm”, AMARA) is based on combining two methods: the “movement artifact reduction algorithm” (MARA, Scholkmann et al. Phys. Meas. 2010, 31, 649–662), and the “accelerometer-based motion artifact removal” (ABAMAR, Virtanen et al. J. Biomed. Opt. 2011, 16, 087005). We describe AMARA in detail and report about successful validation of the algorithm using empirical NIRS data, measured over the prefrontal cortex in adolescents during sleep. In addition, we compared the performance of AMARA to that of MARA and ABAMAR based on validation data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposed an automated three-dimensional (3D) lumbar intervertebral disc (IVD) segmentation strategy from Magnetic Resonance Imaging (MRI) data. Starting from two user supplied landmarks, the geometrical parameters of all lumbar vertebral bodies and intervertebral discs are automatically extracted from a mid-sagittal slice using a graphical model based template matching approach. Based on the estimated two-dimensional (2D) geometrical parameters, a 3D variable-radius soft tube model of the lumbar spine column is built by model fitting to the 3D data volume. Taking the geometrical information from the 3D lumbar spine column as constraints and segmentation initialization, the disc segmentation is achieved by a multi-kernel diffeomorphic registration between a 3D template of the disc and the observed MRI data. Experiments on 15 patient data sets showed the robustness and the accuracy of the proposed algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Smartphone-App zur Kohlenhydratberechnung Neue Technologien wie Blutzuckersensoren und moderne Insulinpumpen prägten die Therapie des Typ-1-Diabetes (T1D) in den letzten Jahren in wesentlichem Ausmaß. Smartphones sind aufgrund ihrer rasanten technischen Entwicklung eine weitere Plattform für Applikationen zur Therapieunterstützung bei T1D. GoCARB Hierbei handelt es sich um ein zur Kohlenhydratberechnung entwickeltes System für Personen mit T1D. Die Basis für Endanwender stellt ein Smartphone mit Kamera dar. Zur Berechnung werden 2 mit dem Smartphone aus verschiedenen Winkeln aufgenommene Fotografien einer auf einem Teller angerichteten Mahlzeit benötigt. Zusätzlich ist eine neben dem Teller platzierte Referenzkarte erforderlich. Die Grundlage für die Kohlenhydratberechnung ist ein Computer-Vision-gestütztes Programm, das die Mahlzeiten aufgrund ihrer Farbe und Textur erkennt. Das Volumen der Mahlzeit wird mit Hilfe eines dreidimensional errechneten Modells bestimmt. Durch das Erkennen der Art der Mahlzeiten sowie deren Volumen kann GoCARB den Kohlenhydratanteil unter Einbeziehung von Nährwerttabellen berechnen. Für die Entwicklung des Systems wurde eine Bilddatenbank von mehr als 5000 Mahlzeiten erstellt und genutzt. Resümee Das GoCARB-System befindet sich aktuell in klinischer Evaluierung und ist noch nicht für Patienten verfügbar.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The lexical items like and well can serve as discourse markers (DMs), but can also play numerous other roles, such as verb or adverb. Identifying the occurrences that function as DMs is an important step for language understanding by computers. In this study, automatic classifiers using lexical, prosodic/positional and sociolinguistic features are trained over transcribed dialogues, manually annotated with DM information. The resulting classifiers improve state-of-the-art performance of DM identification, at about 90% recall and 79% precision for like (84.5% accuracy, κ = 0.69), and 99% recall and 98% precision for well (97.5% accuracy, κ = 0.88). Automatic feature analysis shows that lexical collocations are the most reliable indicators, followed by prosodic/positional features, while sociolinguistic features are marginally useful for the identification of DM like and not useful for well. The differentiated processing of each type of DM improves classification accuracy, suggesting that these types should be treated individually.