922 resultados para An eddy-resolving ocean model simulation
Resumo:
After pointing out the difference between normal and anomalous diffusion, we consider a hadron resonance cascade (HRC) model simulation for particle emission at RHIC and point out that rescattering in an expanding hadron resonance gas leads to a heavy tail in the source distribution. The results are compared to recent PHENIX measurements of the tail of the particle emitting source in Au+Au collisions at RHIC. In this context, we show how can one distinguish experimentally the anomalous diffusion of hadrons from a second order QCD phase transition.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A quantum deformed theory applicable to all shape-invariant bound-state systems is introduced by defining q-deformed ladder operators. We show that these new ladder operators satisfy new q-deformed commutation relations. In this context we construct an alternative q-deformed model that preserves the shape-invariance property presented by the primary system. q-deformed generalizations of Morse, Scarf and Coulomb potentials are given as examples.
Resumo:
We present a simple model for the doped compound Nd2-yCevCuO4, in order to explain some recent experimental results on the latter. Within a Hartree-Fock context, we start from an impurity Anderson-like model and consider the magnetic splitting of the Nd-4f ground state Kramers doublet due to exchange interactions with the ordered Cu moments. Our results are in very good agreement with the experimental data, yielding a Schottky anomaly peak for the specific heat that reduces its amplitude, broadens and shifts to lower temperatures, upon Ce doping. For overdoped compounds at low temperatures, the specific heat behaves linearly and the magnetic susceptibility is constant. A smooth transition from this Fermi liquid-like behavior occurs as temperature is increased and, at high temperatures, the susceptibility exhibits a Curie-like behavior. Finally, we discuss some improvements our model is amenable to incorporate, (C) 1998 Elsevier B.V. B.V. All rights reserved.
Resumo:
We investigate the thermodynamics of an integrable spin ladder model which possesses a free parameter besides rung and leg couplings. The model is exactly solvable by means of the Bethe ansatz and exhibits a phase transition between a gapped and a gapless spin excitation spectrum. The magnetic susceptibility is obtained numerically and its dependence on the anisotropy parameter is determined. The spin gap obtained from the susceptibility curve and the one obtained from the Bethe ansatz equations are in very good agreement. Our results for the magnetic susceptibility fit well the experimental data for the organometallic compounds (5IAP)(2)CuBr4 . 2H(2)O (Landee C. P. et al., Phys. Rev. B, 63 (2001) 100402(R)) Cu-2(C5H12N2)(2)Cl-4 (Hayward C. A., Poilblanc D. and Levy L. P., Phys. Rev. B, 54 (1996) R12649, Chaboussant G. et al., Phys. Rev. Lett., 19 ( 1997) 925; Phys. Rev. B, 55 ( 1997) 3046.) and (C5H12N)(2)CuBr4 (Watson B. C. et al., Phys. Rev. Lett., 86 ( 2001) 5168) in the strong-coupling regime.
Resumo:
We present an integrable spin-ladder model, which possesses a free parameter besides the rung coupling J. Wang's system based on the SU(4) symmetry can be obtained as a special case. The model is exactly solvable by means of the Bethe ansatz method. We determine the dependence on the anisotropy parameter of the phase transition between gapped and gapless spin excitations and present the phase diagram. Finally, we show that the model is a special case of a more general Hamiltonian with three free parameters.
Resumo:
In this article, it is represented by state variables phase a transmission line which parameters are considered frequency independently and frequency dependent. Based on previous analyses, it is used the reasonable number of p circuits and the number of blocks composed by parallel resistor and inductor for reduction of numerical oscillations. It is analyzed the influence of the increase of the RL parallel blocks in the obtained results. The RL parallel blocks are used for inclusion of the frequency influence in the transmission line longitudinal parameter. It is a simple model that is been used by undergraduate students for simulation of traveling wave phenomena in transmission lines. Considering the model without frequency influence, it is included a representation of the corona effect. Some simulations are carried considering the corona effect and they are compared to the results without this phenomenon.
Resumo:
This paper discusses the application of a damage detection methodology to monitor the location and extent of partial structural damage. The methodology combines, in an iterative way, the model updating technique based on frequency response functions (FRF) with monitoring data aiming at identifying the damage area of the structure. After the updating procedure reaches a good correlation between the models, it compares the parameters of the damage structure with those of the undamaged one to find the deteriorated area. The influence of the FEM mesh size on the evaluation of the extent of the damage has also been discussed. The methodology is applied using real experimental data from a spatial frame structure.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Several studies have reported the benefits of sonic and/or ultrasonic instrumentation for root debridement, with most of them focusing on changes in periodontal clinical parameters. The present study investigated possible alterations in the tensile bond strength of crowns cemented with zinc phosphate cement to natural teeth after ultrasonic instrumentation. Forty recently extracted intact human third molars were selected, cleaned and stored in physiologic serum at 4°C. They received standard preparations, at a 16° convergence angle, and AgPd alloy crowns. The crowns were cemented with zinc phosphate cement and then divided into four groups of 10 teeth each. Each group was then subdivided into two subgroups, with one of the subgroups being submitted to 5,000 thermal cycles ranging from 55 ± 2 to 5 ± 2°C, while the other was not. Each group was submitted to ultrasonic instrumentation for different periods of time: group 1 - 0 min (control), group 2 - 5 min, group 3 - 10 min, and group 4 - 15 min. Tensile bond strength tests were performed with an Instron testing machine (model 4310). Statistical analysis was performed using ANOVA and Tukey's test at the 5% level of significance. A significant reduction in the tensile bond strength of crowns cemented with zinc phosphate and submitted to thermal cycles was observed at 15 min (196.75 N versus 0 min = 452.01 N, 5 min = 444.23 N and 10 min = 470.85 N). Thermal cycling and ultrasonic instrumentation for 15 min caused a significant reduction in tensile bond strength (p < .05).
Resumo:
An improved statistical quark model, with quark energy levels given by a central linear confining potential, is used to obtain the light sea-quark asymmetry, d̄/ū, and also for the corresponding difference d̄-ū, inside the nucleon. In the model, a temperature parameter is adjusted by recent results obtained for the Gottfried sum rule violation, with two chemical potentials adjusted by the valence up and down quark normalizations. The results are compared with available recent experimental data. © 2010 American Institute of Physics.
Resumo:
This paper considers the importance of using a top-down methodology and suitable CAD tools in the development of electronic circuits. The paper presents an evaluation of the methodology used in a computational tool created to support the synthesis of digital to analog converter models by translating between different tools used in a wide variety of applications. This tool is named MS 2SV and works directly with the following two commercial tools: MATLAB/Simulink and SystemVision. Model translation of an electronic circuit is achieved by translating a mixed-signal block diagram developed in Simulink into a lower level of abstraction in VHDL-AMS and the simulation project support structure in SystemVision. The method validation was performed by analyzing the power spectral of the signal obtained by the discrete Fourier transform of a digital to analog converter simulation model. © 2011 IEEE.
Resumo:
Pós-graduação em Ciência Animal - FMVA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Given the spread of antibiotic resistance in bacterial pathogens, antimicrobial peptides that can also modulate the immune response may be a novel approach for effectively controlling periodontal infections. In the present study, we used a three-dimensional (3D) co-culture model of gingival epithelial cells and fibroblasts stimulated with Aggregatibacter actinomycetemcomitans lipopolysaccharide (LPS) to investigate the anti-inflammatory properties of human beta-defensin-3 (hBD-3) and cathelicidin (LL-37) and to determine whether these antimicrobial peptides can act in synergy. The 3D co-culture model composed of gingival fibroblasts embedded in a collagen matrix overlaid with gingival epithelial cells had a synergistic effect with respect to the secretion of IL-6 and IL-8 in response to LPS stimulation compared to fibroblasts and epithelial cells alone. The 3D co-culture model was stimulated with non-cytotoxic concentrations of hBD-3 (10 and 20 mu M) and LL-37 (0.1 and 0.2 mu M) individually and in combination in the presence of A. actinomycetemcomitans LPS. A multiplex ELISA assay was used to quantify the secretion of 41 different cytokines. hBD-3 and LL-37 acted in synergy to reduce the secretion of GRO-alpha, G-CSF, IP-10, IL-6, and MCP-1, but only had an additive effect on reducing the secretion of IL-8 in response to A. actinomycetemcomitans LPS stimulation. The present study showed that hBD-3 acted in synergy with LL-37 to reduce the secretion of cytokines by an LPS-stimulated 3D model of gingival mucosa. This combination of antimicrobial peptides thus shows promising potential as an adjunctive therapy for treating inflammatory periodontitis.