1000 resultados para Aires Mateus, Portuguese architecture
Resumo:
Division of labour is one of the most prominent features of social insects. The efficient allocation of individuals to different tasks requires dynamic adjustment in response to environmental perturbations. Theoretical models suggest that the colony-level flexibility in responding to external changes and internal perturbation may depend on the within-colony genetic diversity, which is affected by the number of breeding individuals. However, these models have not considered the genetic architecture underlying the propensity of workers to perform the various tasks. Here, we investigated how both within-colony genetic variability (stemming from variation in the number of matings by queens) and the number of genes influencing the stimulus (threshold) for a given task at which workers begin to perform that task jointly influence task allocation efficiency. We used a numerical agent-based model to investigate the situation where workers had to perform either a regulatory task or a foraging task. One hundred generations of artificial selection in populations consisting of 500 colonies revealed that an increased number of matings always improved colony performance, whatever the number of loci encoding the thresholds of the regulatory and foraging tasks. However, the beneficial effect of additional matings was particularly important when the genetic architecture of queens comprised one or a few genes for the foraging task's threshold. By contrast, a higher number of genes encoding the foraging task reduced colony performance with the detrimental effect being stronger when queens had mated with several males. Finally, the number of genes encoding the threshold for the regulatory task only had a minor effect on colony performance. Overall, our numerical experiments support the importance of mating frequency on efficiency of division of labour and also reveal complex interactions between the number of matings and genetic architecture.
Resumo:
BACKGROUND: Accurate catalogs of structural variants (SVs) in mammalian genomes are necessary to elucidate the potential mechanisms that drive SV formation and to assess their functional impact. Next generation sequencing methods for SV detection are an advance on array-based methods, but are almost exclusively limited to four basic types: deletions, insertions, inversions and copy number gains. RESULTS: By visual inspection of 100 Mbp of genome to which next generation sequence data from 17 inbred mouse strains had been aligned, we identify and interpret 21 paired-end mapping patterns, which we validate by PCR. These paired-end mapping patterns reveal a greater diversity and complexity in SVs than previously recognized. In addition, Sanger-based sequence analysis of 4,176 breakpoints at 261 SV sites reveal additional complexity at approximately a quarter of structural variants analyzed. We find micro-deletions and micro-insertions at SV breakpoints, ranging from 1 to 107 bp, and SNPs that extend breakpoint micro-homology and may catalyze SV formation. CONCLUSIONS: An integrative approach using experimental analyses to train computational SV calling is essential for the accurate resolution of the architecture of SVs. We find considerable complexity in SV formation; about a quarter of SVs in the mouse are composed of a complex mixture of deletion, insertion, inversion and copy number gain. Computational methods can be adapted to identify most paired-end mapping patterns.
Resumo:
In Buenos Aires, the most crowded city of Argentina, there is a potential risk of dengue virus transmission by the mosquito Aedes aegypti during late summer. The temporal patterns of oviposition activity and abundance of breeding sites of this vector were studied in two cemeteries of the city. Between September 1998 and August 1999, we examined 142 ovitraps weekly and a total of 18,010 water-filled containers. Both study areas showed remarkable differences in the percentages of positive ovitraps (19% vs 8%) and breeding sites (18% vs 1%), but similar temporal abundance patterns. The percentage of breeding sites was higher in summer and autumn than in spring and winter, and the percentage of positive ovitraps was higher in summer than in the other three seasons. Immatures were recorded from the first week of October to the second week of July, and oviposition activity from the third week of October until the end of April. In both cemeteries and with both methodologies the highest infestation levels were registered in March (ovitraps: 41.8% and 20.6%, breeding sites: 39.2% and 3.4%). These highest abundances took place after several months with mean temperatures above 20ºC and accumulated rainfalls above 150 mm. A sharp decline in oviposition activity was observed when monthly mean temperature decreased to 16.5ºC, and no eggs were found below 14.8ºC. Seasonal fluctuation of Ae. aegypti abundances in mid-latitudes like Buenos Aires would allow reduction of the egg mosquito population through the elimination of containers during the coldest months, which are free of adults.
Resumo:
The epithelial sodium channel (ENaC) is a key element for the maintenance of sodium balance and the regulation of blood pressure. Three homologous ENaC subunits (alpha, beta and gamma) assemble to form a highly Na+-selective channel. However, the subunit stoichiometry of ENaC has not yet been solved. Quantitative analysis of cell surface expression of ENaC alpha, beta and gamma subunits shows that they assemble according to a fixed stoichiometry, with alpha ENaC as the most abundant subunit. Functional assays based on differential sensitivities to channel blockers elicited by mutations tagging each alpha, beta and gamma subunit are consistent with a four subunit stoichiometry composed of two alpha, one beta and one gamma. Expression of concatameric cDNA constructs made of different combinations of ENaC subunits confirmed the four subunit channel stoichiometry and showed that the arrangement of the subunits around the channel pore consists of two alpha subunits separated by beta and gamma subunits.
Resumo:
Ireland's International Education Strategy 2010 - 2015: Investing in Global Relationships Summary Report - Portuguese. Provided by the Department of Education and Skills, Ireland.
Resumo:
We conducted a whole year research on the ecology of Mansonia indubitans and Ma. titillans in Macáes Pond, Costanera Sur Reserve, Buenos Aires, Argentina. The usage of different floating plants by immature instars and their overwintering was analized. The percentage of usage of the available floating macrophytes (Pistia, Limnobium, and Salvinia) by the larvae and pupae was studied. Also, we defined positivity (P+) as the percentage of plants with immature instars for each plant genus on a monthly basis. Ma. immature instars were captured throughout the year and Pistia was the resource most commonly exploited by the mosquitoes. The percentage of fourth-instar larvae and pupae on Pistia roots with respect to total immature instars captured was assessed on a monthly and seasonal basis. The proportion of fourth-instar larvae and pupae from both species of Mansonia on water lettuce roots, showed significant differences between months and seasons. Our results suggest that the populations of Ma. indubitans and Ma. titillans in Macáes Pond, survive during winter mainly as fourth-instar larvae.
Resumo:
OBJECTIVE: A large body of epidemiologic data strongly suggests an association between excess adiposity and coronary artery disease (CAD). Low adiponectin levels, a hormone secreted only from adipocytes, have been associated with an increased risk of CAD in observational studies. However, these associations cannot clarify whether this relationship is causal or due to a shared set of causal factors or even confounding. Genome-wide association studies have identified common variants that influence adiponectin levels, providing valuable tools to examine the genetic relationship between adiponectin and CAD. METHODS: Using 145 genome wide significant SNPs for adiponectin from the ADIPOGen consortium (n = 49,891), we tested whether adiponectin-decreasing alleles influenced risk of CAD in the CARDIoGRAM consortium (n = 85,274). RESULTS: In single-SNP analysis, 5 variants among 145 SNPs were associated with increased risk of CAD after correcting for multiple testing (P < 4.4 × 10(-4)). Using a multi-SNP genotypic risk score to test whether adiponectin levels and CAD have a shared genetic etiology, we found that adiponectin-decreasing alleles increased risk of CAD (P = 5.4 × 10(-7)). CONCLUSION: These findings demonstrate that adiponectin levels and CAD have a shared allelic architecture and provide rationale to undertake a Mendelian randomization studies to understand if this relationship is causal.
Resumo:
Using genome-wide data from 253,288 individuals, we identified 697 variants at genome-wide significance that together explained one-fifth of the heritability for adult height. By testing different numbers of variants in independent studies, we show that the most strongly associated ∼2,000, ∼3,700 and ∼9,500 SNPs explained ∼21%, ∼24% and ∼29% of phenotypic variance. Furthermore, all common variants together captured 60% of heritability. The 697 variants clustered in 423 loci were enriched for genes, pathways and tissue types known to be involved in growth and together implicated genes and pathways not highlighted in earlier efforts, such as signaling by fibroblast growth factors, WNT/β-catenin and chondroitin sulfate-related genes. We identified several genes and pathways not previously connected with human skeletal growth, including mTOR, osteoglycin and binding of hyaluronic acid. Our results indicate a genetic architecture for human height that is characterized by a very large but finite number (thousands) of causal variants.
Resumo:
We recently reported that nuclear grading in prostate cancer is subject to a strong confirmation bias induced by the tumor architecture. We now wondered whether a similar bias governs nuclear grading in breast carcinoma. An unannounced test was performed at a pathology conference. Pathologists were asked to grade nuclei in a PowerPoint presentation. Circular high power fields of 27 invasive ductal carcinomas were shown, superimposed over low power background images of either tubule-rich or tubule-poor carcinomas. We found (a) that diagnostic reproducibility of nuclear grades was poor to moderate (weighed kappa values between 0.07 and 0.54, 27 cases, 44 graders), but (b) that nuclear grades were not affected by the tumor architecture. We speculate that the categorized grading in breast cancer, separating tubule formation, nuclear pleomorphism, and mitotic figure counts in a combined three tier score, prevents the bias that architecture exerts on nuclear grades in less well-controlled situations.
Resumo:
It is well known that image processing requires a huge amount of computation, mainly at low level processing where the algorithms are dealing with a great number of data-pixel. One of the solutions to estimate motions involves detection of the correspondences between two images. For normalised correlation criteria, previous experiments shown that the result is not altered in presence of nonuniform illumination. Usually, hardware for motion estimation has been limited to simple correlation criteria. The main goal of this paper is to propose a VLSI architecture for motion estimation using a matching criteria more complex than Sum of Absolute Differences (SAD) criteria. Today hardware devices provide many facilities for the integration of more and more complex designs as well as the possibility to easily communicate with general purpose processors
Resumo:
This paper proposes a parallel architecture for estimation of the motion of an underwater robot. It is well known that image processing requires a huge amount of computation, mainly at low-level processing where the algorithms are dealing with a great number of data. In a motion estimation algorithm, correspondences between two images have to be solved at the low level. In the underwater imaging, normalised correlation can be a solution in the presence of non-uniform illumination. Due to its regular processing scheme, parallel implementation of the correspondence problem can be an adequate approach to reduce the computation time. Taking into consideration the complexity of the normalised correlation criteria, a new approach using parallel organisation of every processor from the architecture is proposed
Resumo:
This paper surveys control architectures proposed in the literature and describes a control architecture that is being developed for a semi-autonomous underwater vehicle for intervention missions (SAUVIM) at the University of Hawaii. Conceived as hybrid, this architecture has been organized in three layers: planning, control and execution. The mission is planned with a sequence of subgoals. Each subgoal has a related task supervisor responsible for arranging a set of pre-programmed task modules in order to achieve the subgoal. Task modules are the key concept of the architecture. They are the main building blocks and can be dynamically re-arranged by the task supervisor. In our architecture, deliberation takes place at the planning layer while reaction is dealt through the parallel execution of the task modules. Hence, the system presents both a hierarchical and an heterarchical decomposition, being able to show a predictable response while keeping rapid reactivity to the dynamic environment
Resumo:
All-optical label swapping (AOLS) forms a key technology towards the implementation of all-optical packet switching nodes (AOPS) for the future optical Internet. The capital expenditures of the deployment of AOLS increases with the size of the label spaces (i.e. the number of used labels), since a special optical device is needed for each recognized label on every node. Label space sizes are affected by the way in which demands are routed. For instance, while shortest-path routing leads to the usage of fewer labels but high link utilization, minimum interference routing leads to the opposite. This paper studies all-optical label stacking (AOLStack), which is an extension of the AOLS architecture. AOLStack aims at reducing label spaces while easing the compromise with link utilization. In this paper, an integer lineal program is proposed with the objective of analyzing the softening of the aforementioned trade-off due to AOLStack. Furthermore, a heuristic aiming at finding good solutions in polynomial-time is proposed as well. Simulation results show that AOLStack either a) reduces the label spaces with a low increase in the link utilization or, similarly, b) uses better the residual bandwidth to decrease the number of labels even more