991 resultados para Air Pollutants, Occupational
Resumo:
Report of the Project Group
Resumo:
Although exposure to secondhand smoke (SHS) is reportedly high in prison, few studies have measured this in the prison environment, and none have done so in Europe. We measured two indicators of SHS exposure (particulate matter PM10 and nicotine) in fixed locations before (2009) and after (2010) introduction of a partial smoking ban in a Swiss prison. Access to smoking cessation support was available to detainees throughout the study. Objectives To measure SHS before and after the introduction of a partial smoking ban. Methods Assessment of particulate matter PM10 (suspended microparticles of 10 μm) and nicotine in ambient air, collected by real-time aerosol monitor and nicotine monitoring devices. Results The authors observed a significant improvement of nicotine concentrations in the air after the introduction of the smoking ban (before: 7.0 μg/m(3), after: 2.1 μg/m(3), difference 4.9 μg/m(3), 95% CI for difference: 0.52 to 9.8, p=0.03) but not in particulate matter PM10 (before: 0.11 mg/m(3), after: 0.06 mg/m(3), difference 0.06 mg/m(3), 95% CI for difference of means: -0.07 to 0.19, p=0.30). Conclusions The partial smoking ban was followed by a decrease in nicotine concentrations in ambient air. These improvements can be attributed to the introduction of the smoking ban since no other policy change occurred during this period. Although this shows that concentrations of SHS decreased significantly, protection was still incomplete and further action is necessary to improve indoor air quality.
Resumo:
The increase in mortality risk associated with long-term exposure to particulate air pollution is one of the most important, and best-characterised, effects of air pollution on health. This report presents estimates of the size of this effect on mortality in local authority areas in the UK, building upon the attributable fractions reported as an indicator in the public health outcomes framework for England. It discusses the concepts and assumptions underlying these calculations and gives information on how such estimates can be made. The estimates are expected to be useful to health and wellbeing boards when assessing local public health priorities, as well as to others working in the field of air quality and public health. The estimates of mortality burden are based on modelled annual average concentrations of fine particulate matter (PM2.5) in each local authority area originating from human activities. Local data on the adult population and adult mortality rates is also used. Central estimates of the fraction of mortality attributable to long-term exposure to current levels of anthropogenic (human-made) particulate air pollution range from around 2.5% in some local authorities in rural areas of Scotland and Northern Ireland and between 3 and 5% in Wales, to over 8% in some London boroughs. Because of uncertainty in the increase in mortality risk associated with ambient PM2.5, the actual burdens associated with these modelled concentrations could range from approximately one-sixth to about double these figures. Thus, current levels of particulate air pollution have a considerable impact on public health. Measures to reduce levels of particulate air pollution, or to reduce exposure of the population to such pollution, are regarded as an important public health initiative.
Resumo:
In this study it was compared the MAS-100 and the Andersen air samplers' performances and a similar trend in both instruments was observed. It was also evaluated the microbial contamination levels in 3060 samples of offices, hospitals, industries, and shopping centers, in the period of 1998 to 2002, in Rio de Janeiro city. Considering each environment, 94.3 to 99.4% of the samples were the allowed limit in Brazil (750 CFU/m³). The industries' results showed more important similarity among fungi and total heterotrophs distributions, with the majority of the results between zero and 100 CFU/m³. The offices' results showed dispersion around 300 CFU/m³. The hospitals' results presented the same trend, with an average of 200 CFU/m³. Shopping centers' environments showed an average of 300 CFU/m³ for fungi, but presented a larger dispersion pattern for the total heterotrophs, with the highest average (1000 CFU/m³). It was also investigated the correlation of the sampling period with the number of airborne microorganisms and with the environmental parameters (temperature and air humidity) through the principal components analysis. All indoor air samples distributions were very similar. The temperature and air humidity had no significant influence on the samples dispersion patterns.
Resumo:
Résumé Ce travail s'intéresse à la mise en oeuvre des politiques publiques visant à résoudre les problèmes engendrés par le développement de la mobilité urbaine. Nous adoptons sur cette dernière un point de vue nouveau, à savoir que l'enjeu de la régulation du trafic est d'abord celui de la maîtrise des usages nombreux et conflictuels sur deux ressources collectives, l'air et les voies publiques. Pour comprendre comment ces usages sont régulés, nous mobilisons les deux apports théoriques de l'économie institutionnelle (Bromley 1991, Devlin et Grafton 1990, Ostrom 1990, 2000) et de l'analyse des politiques publiques (Knoepfel et al. 2001) au sein du cadre d'analyse des régimes institutionnels de ressources collectives. La première problématise la difficulté de définir des règles communes d'usage pour éviter la surexploitation des ressources alors que la seconde met en jeu notamment le problème de la coordination des politiques publiques d'exploitation et de protection de l'environnement. Sur ce socle, nous choisissons de retenir une approche « institutionnaliste centrée sur les acteurs » (Scharpf 1997), aussi thématisée par les approches néo-institutionnalistes (Hall/Taylor 1996, March/Olsen 1989) visant à expliquer le changement politique par deux types de variables explicatives, à savoir les changements dans la régulation publique (variable institutionnelle) et les changements de la configuration des acteurs en présence, à partir desquels nous bâtissons nos hypothèses de recherche. En l'espèce, l'étude mobilise la variable explicative des régimes institutionnels de l'air et du sol mobilisés par les acteurs de la mobilité pour comprendre l'évolution de la répartition des usages sur les routes urbaines. Ce processus passe par le recours à des ressources de politiques publiques comme le droit, l'argent, l'information, le consensus, le soutien politique, l'infrastructure ou le temps que les acteurs peuvent activer en fonction des règles institutionnelles en présence. On peut classer ces dernières d'abord selon leur niveau de généralité (niveaux opérationnel, des choix collectifs et constitutionnel - Ostrom 1990). L'étude établit que la régulation des usages connaît une importante gradation que rend compte le concept de résistance normative. En fonction de cette dernière, les acteurs essaient de s'imposer au moyen de deux dimensions des règles, que ce travail met en exergue, à savoir selon qu'elles régulent tantôt le mode de décision tantôt le mode d'appropriation. Ces règles décisionnelles et possessionnelles déterminent les possibilités d'accès, ainsi que la procédure d'intervention et la place qui sont réservées aux acteurs, aussi bien pour les ressources collectives physiques que de politique publique. L'étude permet ainsi à la fois d'apporter des éléments nouveaux à la théorie des changements de régimes institutionnels de ressources collectives, d'éclairer un peu plus les processus de mise en couvre de l'action publique et de contribuer au débat sur les principales propositions permettant de maîtriser les impacts négatifs du développement de la mobilité.
Resumo:
BACKGROUND: Three different burnout types have been described: The "frenetic" type describes involved and ambitious subjects who sacrifice their health and personal lives for their jobs; the "underchallenged" type describes indifferent and bored workers who fail to find personal development in their jobs, and the "worn-out" in type describes neglectful subjects who feel they have little control over results and whose efforts go unacknowledged. The study aimed to describe the possible associations between burnout types and general sociodemographic and occupational characteristics. METHODS: A cross-sectional study was carried out on a multi-occupational sample of randomly selected university employees (n = 409). The presence of burnout types was assessed by means of the "Burnout Clinical Subtype Questionnaire (BCSQ-36)", and the degree of association between variables was assessed using an adjusted odds ratio (OR) obtained from multivariate logistic regression models. RESULTS: Individuals working more than 40 hours per week presented with the greatest risk for "frenetic" burnout compared to those working fewer than 35 hours (adjusted OR = 5.69; 95% CI = 2.52-12.82; p < 0.001). Administration and service personnel presented the greatest risk of "underchallenged" burnout compared to teaching and research staff (adjusted OR = 2.85; 95% CI = 1.16-7.01; p = 0.023). Employees with more than sixteen years of service in the organisation presented the greatest risk of "worn-out" burnout compared to those with less than four years of service (adjusted OR = 4.56; 95% CI = 1.47-14.16; p = 0.009). CONCLUSIONS: This study is the first to our knowledge that suggests the existence of associations between the different burnout subtypes (classified according to the degree of dedication to work) and the different sociodemographic and occupational characteristics that are congruent with the definition of each of the subtypes. These results are consistent with the clinical profile definitions of burnout syndrome. In addition, they assist the recognition of distinct profiles and reinforce the idea of differential characterisation of the syndrome for more effective treatment.
Resumo:
Objective: To assess the relationship between parental occupational exposure to organic solvents, and the risk of anencephaly in Mexico. Methods: A case-control study was conducted based on the registers of the Epidemiological Surveillance System for Neural Tube Defects in Mexico; 151 cases of anencephaly of ≥20 weeks’ gestation were included. A control, born alive and without any apparent congenital malformations at birth, was selected for each case in the same maternity service in which the case was born. Information on occupational exposures, lifestyle habits, reproductive history, use of medicines, supplementation with multivitamins and folic acid, was obtained by a general questionnaire; a food frequency questionnaire was also applied to obtain information of daily intake of folate and other B vitamins. Occupational exposure to organic solvents was based on job title as a proxy for exposure and analysed considering two critical periods around conception. Results: In logistic regression analysis, the odds of having a child with anencephaly was higher if the mother or the father was occupationally exposed to organic solvents during the periconceptional period, or when both parents or at least one of them were occupationally exposed during this period with an adjusted odds ratio of 2.97 (95% CI 1.36 to 6.52). Conclusions: The results support the hypothesis that both maternal and paternal occupational exposure to organic solvents can increase the probability of having a child with anencephaly.
Resumo:
Objectives Exposure assessment to a single pesticide does not capture the complexity of the occupational exposure. Recently, pesticide use patterns analysis has emerged as an alternative to study these exposures. The aim of this study is to identify the pesticide use pattern among flower growers in Mexico participating in the study on the endocrine and reproductive effects associated with pesticide exposure. Methods A cross-sectional study was carried out to gather retrospective information on pesticide use applying a questionnaire to the person in charge of the participating flower growing farms. Information about seasonal frequency of pesticide use (rainy and dry) for the years 2004 and 2005 was obtained. Principal components analysis was performed. Results Complete information was obtained for 88 farms and 23 pesticides were included in the analysis. Six principal components were selected, which explained more than 70% of the data variability. The identified pesticide use patterns during both years were: 1. fungicides benomyl, carbendazim, thiophanate and metalaxyl (both seasons), including triadimephon during the rainy season, chlorotalonyl and insecticide permethrin during the dry season; 2. insecticides oxamyl, biphenthrin and fungicide iprodione (both seasons), including insecticide methomyl during the dry season; 3. fungicide mancozeb and herbicide glyphosate (only during the rainy season); 4. insecticides metamidophos and parathion (both seasons); 5. insecticides omethoate and methomyl (only rainy season); and 6. insecticides abamectin and carbofuran (only dry season). Some pesticides do not show a clear pattern of seasonal use during the studied years. Conclusions The principal component analysis is useful to summarise a large set of exposure variables into smaller groups of exposure patterns, identifying the mixtures of pesticides in the occupational environment that may have an interactive effect on a particular health effect.
Resumo:
The members of the genus Acinetobacter are Gram-negative cocobacilli that are frequently found in the environment but also in the hospital setting where they have been associated with outbreaks of nosocomial infections. Among them, Acinetobacter baumannii has emerged as the most common pathogenic species involved in hospital-acquired infections. One reason for this emergence may be its persistence in the hospital wards, in particular in the intensive care unit; this persistence could be partially explained by the capacity of these microorganisms to form biofilm. Therefore, our main objective was to study the prevalence of the two main types of biofilm formed by the most relevant Acinetobacter species, comparing biofilm formation between the different species. Findings: Biofilm formation at the air-liquid and solid-liquid interfaces was investigated in different Acinetobacter spp. and it appeared to be generally more important at 25°C than at 37°C. The biofilm formation at the solid-liquid interface by the members of the ACB-complex was at least 3 times higher than the other species (80-91% versus 5-24%). In addition, only the isolates belonging to this complex were able to form biofilm at the air-liquid interface; between 9% and 36% of the tested isolates formed this type of pellicle. Finally, within the ACB-complex, the biofilm formed at the air-liquid interface was almost 4 times higher for A. baumannii and Acinetobacter G13TU than for Acinetobacter G3 (36%, 27% & 9% respectively). Conclusions: Overall, this study has shown the capacity of the Acinetobacter spp to form two different types of biofilm: solid-liquid and air-liquid interfaces. This ability was generally higher at 25°C which might contribute to their persistence in the inanimate hospital environment. Our work has also demonstrated for the first time the ability of the members of the ACB-complex to form biofilm at the air-liquid interface, a feature that was not observed in other Acinetobacter species.
Resumo:
Abstract: Traditionally, pollution risk assessment is based on the measurement of a pollutant's total concentration in a sample. The toxicity of a given pollutant in the environment, however, is tightly linked to its bioavailability, which may differ significantly from the total amount. Physico-chemical and biological parameters strongly influence pollutant fate in terms of leaching, sequestration and biodegradation. Bacterial sensorreporters, which consist of living micro-organisms genetically engineered to produce specific output in response to target chemicals, offer an interesting alternative to monitoring approaches. Bacterial sensor-reporters detect bioavailable and/or bioaccessible compound fractions in samples. Currently, a variety of environmental pollutants can be targeted by specific biosensor-reporters. Although most of such strains are still confined to the lab, several recent reports have demonstrated utility of bacterial sensing-reporting in the field, with method detection limits in the nanomolar range. This review illustrates the general design principles for bacterial sensor-reporters, presents an overview of the existing biosensor-reporter strains with emphasis on organic compound detection. A specific focus throughout is on the concepts of bioavailability and bioaccessibility, and how bacteria-based sensing-reporting systems can help to improve our basic understanding of the different processes at work.
Resumo:
The introduction of engineered nanostructured materials into a rapidly increasing number of industrial and consumer products will result in enhanced exposure to engineered nanoparticles. Workplace exposure has been identified as the most likely source of uncontrolled inhalation of engineered aerosolized nanoparticles, but release of engineered nanoparticles may occur at any stage of the lifecycle of (consumer) products. The dynamic development of nanomaterials with possibly unknown toxicological effects poses a challenge for the assessment of nanoparticle induced toxicity and safety.In this consensus document from a workshop on in-vitro cell systems for nanoparticle toxicity testing11Workshop on 'In-Vitro Exposure Studies for Toxicity Testing of Engineered Nanoparticles' sponsored by the Association for Aerosol Research (GAeF), 5-6 September 2009, Karlsruhe, Germany. an overview is given of the main issues concerning exposure to airborne nanoparticles, lung physiology, biological mechanisms of (adverse) action, in-vitro cell exposure systems, realistic tissue doses, risk assessment and social aspects of nanotechnology. The workshop participants recognized the large potential of in-vitro cell exposure systems for reliable, high-throughput screening of nanoparticle toxicity. For the investigation of lung toxicity, a strong preference was expressed for air-liquid interface (ALI) cell exposure systems (rather than submerged cell exposure systems) as they more closely resemble in-vivo conditions in the lungs and they allow for unaltered and dosimetrically accurate delivery of aerosolized nanoparticles to the cells. An important aspect, which is frequently overlooked, is the comparison of typically used in-vitro dose levels with realistic in-vivo nanoparticle doses in the lung. If we consider average ambient urban exposure and occupational exposure at 5mg/m3 (maximum level allowed by Occupational Safety and Health Administration (OSHA)) as the boundaries of human exposure, the corresponding upper-limit range of nanoparticle flux delivered to the lung tissue is 3×10-5-5×10-3μg/h/cm2 of lung tissue and 2-300particles/h/(epithelial) cell. This range can be easily matched and even exceeded by almost all currently available cell exposure systems.The consensus statement includes a set of recommendations for conducting in-vitro cell exposure studies with pulmonary cell systems and identifies urgent needs for future development. As these issues are crucial for the introduction of safe nanomaterials into the marketplace and the living environment, they deserve more attention and more interaction between biologists and aerosol scientists. The members of the workshop believe that further advances in in-vitro cell exposure studies would be greatly facilitated by a more active role of the aerosol scientists. The technical know-how for developing and running ALI in-vitro exposure systems is available in the aerosol community and at the same time biologists/toxicologists are required for proper assessment of the biological impact of nanoparticles.