898 resultados para ACE polymorphism
Resumo:
Alzheimer’s Disease and other dementias are one of the most challenging illnesses confronting countries with ageing populations. Treatment options for dementia are limited, and the costs are significant. There is a growing need to develop new treatments for dementia, especially for the elderly. There is also growing evidence that centrally acting angiotensin converting enzyme (ACE) inhibitors, which cross the blood-brain barrier, are associated with a reduced rate of cognitive and functional decline in dementia, especially in Alzheimer’s disease (AD). The aim of this research is to investigate the effects of centrally acting ACE inhibitors (CACE-Is) on the rate of cognitive and functional decline in dementia, using a three phased KDD process. KDD, as a scientific way to process and analysis clinical data, is used to find useful insights from a variety of clinical databases. The data used are from three clinic databases: Geriatric Assessment Tool (GAT), the Doxycycline and Rifampin for Alzheimer’s Disease (DARAD), and the Qmci validation databases, which were derived from several different geriatric clinics in Canada. This research involves patients diagnosed with AD, vascular or mixed dementia only. Patients were included if baseline and end-point (at least six months apart) Standardised Mini-Mental State Examination (SMMSE), Quick Mild Cognitive Impairment (Qmci) or Activities Daily Living (ADL) scores were available. Basically, the rates of change are compared between patients taking CACE-Is, and those not currently treated with CACE-Is. The results suggest that there is a statistically significant difference in the rate of decline in cognitive and functional scores between CACE-I and NoCACE-I patients. This research also validates that the Qmci, a new short assessment test, has potential to replace the current popular screening tests for cognition in the clinic and clinical trials.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
v. 45, n.2, p.152-160, abr/.jun. 2016.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-07
Resumo:
Antineoplastic drugs are hazardous chemical agents used mostly in the treatment of patients with cancer, however health professionals that handle and administer these drugs can become exposed and develop DNA damage. Comet assay is a standard method for assessing DNA damage in human biomonitoring and, combined with formamidopyrimidine DNA glycosylase (FPG) enzyme, it specifically detects DNA oxidative damage. The aim of this study was to investigate genotoxic effects in workers occupationally exposed to cytostatics (n = 46), as compared to a control group with no exposure (n = 46) at two Portuguese hospitals, by means of the alkaline comet assay. The potential of the OGG1 Ser326Cys polymorphism as a susceptibility biomarker was also investigated. Exposure was evaluated by investigating the contamination of surfaces and genotoxic assessment was done by alkaline comet assay in peripheral blood lymphocytes. OGG1 Ser326Cys (rs1052133) polymorphism was studied by Real Time PCR. As for exposure assessment, there were 121 (37%) positive samples out of a total of 327 samples analysed from both hospitals. No statistically significant differences (Mann-Whitney test, p > 0.05) were found between subjects with and without exposure, regarding DNA damage and oxidative DNA damage, nevertheless the exposed group exhibited higher values. Moreover, there was no consistent trend regarding the variation of both biomarkers as assessed by comet assay with OGG1 polymorphism. Our study was not statistically significant regarding occupational exposure to antineoplastic drugs and genetic damage assessed by comet assay. However, health professionals should be monitored for risk behaviour, in order to ensure that safety measures are applied and protection devices are used correctly.
Resumo:
The development of molecular markers for genomic studies in Mangifera indica (mango) will allow marker-assisted selection and identification of genetically diverse germplasm, greatly aiding mango breeding programs. We report here our identification of thousands of unambiguous molecular markers that can be easily assayed across genotypes of the species. With origin centered in Southeast Asia, mangos are grown throughout the tropics and subtropics as a nutritious fruit that exhibits remarkable intraspecific phenotypic diversity. With the goal of building a high density genetic map, we have undertaken discovery of sequence variation in expressed genes across a broad range of mango cultivars. A transcriptome sequence reference was built de novo from extensive sequencing and assembly of RNA from cultivar 'Tommy Atkins'. Single nucleotide polymorphisms (SNPs) in protein coding transcripts were determined from alignment of RNA reads from 24 mango cultivars of diverse origins: 'Amin Abrahimpur' (India), 'Aroemanis' (Indonesia), 'Burma' (Burma), 'CAC' (Hawaii), 'Duncan' (Florida), 'Edward' (Florida), 'Everbearing' (Florida), 'Gary' (Florida), 'Hodson' (Florida), 'Itamaraca' (Brazil), 'Jakarata' (Florida), 'Long' (Jamaica), 'M. Casturi Purple' (Borneo), 'Malindi' (Kenya), 'Mulgoba' (India), 'Neelum' (India), 'Peach' (unknown), 'Prieto' (Cuba), 'Sandersha' (India), 'Tete Nene' (Puerto Rico), 'Thai Everbearing' (Thailand), 'Toledo' (Cuba), 'Tommy Atkins' (Florida) and 'Turpentine' (West Indies). SNPs in a selected subset of protein coding transcripts are currently being converted into Fluidigm assays for genotyping of mapping populations and germplasm collections. Using an alternate approach, SNPs (144) discovered by sequencing of candidate genes in 'Kensington Pride' have already been converted and used for genotyping.
Resumo:
Kidney transplantation has been recognised as the optimal treatment choice for most end stage renal disease patients and the increase of allograft survival rates is achieved through the refinement of novel immunosuppressive agents. Chronic Graft Disease (CGD) is a multifactorial process that likely includes a combination of immunological, apoptotic and inflammatory factors. The application of individualised immunosuppressive therapies will also depend on the identification of risk factors that can influence chronic disease. Despite being the subject of several independent studies, investigations of the relationship between transforming growth factor-b1 (TGF-b1) polymorphisms and kidney graft outcome continue to be plagued by contradictory conclusions.
Resumo:
Rotavirus double-stranded RNA was detected directly in sewage treatment plant samples over a 1-year period by reverse transcription followed by PCR amplification of the VP7 gene and Southern blot hybridization. The presence of naturally occurring rotaviruses was demonstrated in 42% of raw sewage samples and in 67% of treated effluent samples, Amplified viral sequences were analyzed bg restriction enzymes. Ten different restriction profiles were characterized, most of which were found in treated effluent samples. A mixture of restriction profiles was observed in 75% of contaminated effluent samples, The profiles were compared with those obtained from human rotavirus isolates involved in infections in children from the same area (six different profiles were detected), Five identical viral sequences were detected in both environmental and clinical samples, Restriction profiles sere also compared io profiles from known genomic sequences of human and animal viruses. Both human and animal origins of rotavirus contamination of water seemed likely.
Resumo:
Background: The -819C/T polymorphism in interleukin 10 (IL-10) gene has been reported to be associated with inflammatory bowel disease (IBD) ,but the previous results are conflicting. Materials and Methods: The present study aimed at investigating the association between this polymorphism and risk of IBD using a meta-analysis.PubMed,Web of Science,EMBASE,google scholar and China National Knowledge Infrastructure (CNKI) databases were systematically searched to identify relevant publications from their inception to April 2016.Pooled odds ratio (OR) with 95% confidence interval (CI) was calculated using fixed- or random-effects models. Results: A total of 7 case-control studies containing 1890 patients and 2929 controls were enrolled into this meta-analysis, and our results showed no association between IL-10 gene -819C/T polymorphism and IBD risk(TT vs. CC:OR=0.81,95%CI 0.64- 1.04;CT vs. CC:OR=0.92,95%CI 0.81-1.05; Dominant model: OR=0.90,95%CI 0.80-1.02; Recessive model: OR=0.84,95%CI 0.66-1.06). In a subgroup analysis by nationality, the -819C/T polymorphism was not associated with IBD in both Asians and Caucasians. In the subgroup analysis stratified by IBD type, significant association was found in Crohn’s disease(CD)(CT vs. CC:OR=0.68,95%CI 0.48-0.97). Conclusion: In summary, the present meta-analysis suggests that the IL-10 gene -819C/T polymorphism may be associated with CD risk.
Resumo:
Developing a fast, inexpensive, and specific test that reflects the mutations present in Mycobacterium tuberculosis isolates according to geographic region is the main challenge for drug-resistant tuberculosis (TB) control. The objective of this study was to develop a molecular platform to make a rapid diagnosis of multidrug-resistant (MDR) and extensively drug-resistant TB based on single nucleotide polymorphism (SNP) mutations present in the rpoB, katG, inhA, ahpC, and gyrA genes from Colombian M. tuberculosis isolates. The amplification and sequencing of each target gene was performed. Capture oligonucleotides, which were tested before being used with isolates to assess the performance, were designed for wild type and mutated codons, and the platform was standardised based on the reverse hybridisation principle. This method was tested on DNA samples extracted from clinical isolates from 160 Colombian patients who were previously phenotypically and genotypically characterised as having susceptible or MDR M. tuberculosis. For our method, the kappa index of the sequencing results was 0,966, 0,825, 0,766, 0,740, and 0,625 for rpoB, katG, inhA, ahpC, and gyrA, respectively. Sensitivity and specificity were ranked between 90-100% compared with those of phenotypic drug susceptibility testing. Our assay helps to pave the way for implementation locally and for specifically adapted methods that can simultaneously detect drug resistance mutations to first and second-line drugs within a few hours.
Resumo:
Currently, it is accepted that there are three species that were formerly grouped under Candida parapsilosis : C. parapsilosis sensu stricto, Candida orthopsilosis , and Candida metapsilosis . In fact, the antifungal susceptibility profiles and distinct virulence attributes demonstrate the differences in these nosocomial pathogens. An accurate, fast, and economical identification of fungal species has been the main goal in mycology. In the present study, we searched sequences that were available in the GenBank database in order to identify the complete sequence for the internal transcribed spacer (ITS)1-5.8S-ITS2 region, which is comprised of the forward and reverse primers ITS1 and ITS4. Subsequently, an in silico polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was performed to differentiate the C. parapsilosis complex species. Ninety-eight clinical isolates from patients with fungaemia were submitted for analysis, where 59 isolates were identified as C. parapsilosis sensu stricto, 37 were identified as C. orthopsilosis, and two were identified as C. metapsilosis. PCR-RFLP quickly and accurately identified C. parapsilosis complex species, making this method an alternative and routine identification system for use in clinical mycology laboratories.
Resumo:
Poster presented at the From Basic Sciences to Clinical Research - First International Congress of CiiEM. Egas Moniz, Caparica, Portugal, 27-28 November 2015
Resumo:
Poster presented at the From Basic Sciences to Clinical Research - First International Congress of CiiEM. Egas Moniz, Caparica, Portugal, 27-28 November 2015