1000 resultados para 15475-1


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The X-ray crystal structures of 4-butyl-1,2-diphenylpyrazolidine-3,5-dione (phenylbutazone)(I). and its 2 : 1 complex (II) with piperazine have been determined by direct methods and the structures refined to R 0.096 (2 300 observed reflections measured by diffractometer) and 0.074 (2 494 observed reflections visuallyestimated). Crystals are monoclinic, space group P21/c; for (I)a= 21.695(4), b= 5.823(2), c= 27.881(4)Å, = 108.06 (10)°, Z= 8, and for (II)a= 8.048(4), b= 15.081(4), c= 15.583(7)Å, = 95.9(3)°, Z= 2. The two crystallographically independant molecules in the structure of (I) are similar except for the conformation of the butyl group, which is disordered in one of the molecules. In the pyrazolidinedione group, the two C–C bonds are single and the two C–O bonds double. The two nitrogen atoms in the five-membered ring are pyramidal with the attached phenyl groups lying on the opposite sides of the mean plane of the ring. The phenylbutazone molecule in (II) exists as a negative ion owing to deprotonation of C-4. C-4 is therefore trigonal and the orientation of the Bu group with respect to the pyrazolidinedione group is considerably different from that in (I); there is also considerable electron delocalization along the C–O and C–C bonds. These changes in geometry and electronic structure may relate to biological activity. The doubly charged cationic piperazine molecule exists in the chair form with the nitrogen atoms at the apices. The crystal structure of (II) is stabilized by ionic interactions and N–H O hydrogen bonds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Type 1 diabetes (T1D) is considered to be an autoimmune disease. The cause of T1D is the destruction of insulin-producing β-cells in the pancreatic islets. The autoimmune nature of T1D is characterized by the presence of autoreactive T-cells and autoantibodies against β-cell molecules. Insulin is the only β-cell-specific autoantigen associated with T1D but the insulin autoantibodies (IAAs) are difficult to measure with proper sensitivity. T-cell assays for detection of autoreactive T-cells, such as insulin-specific T-cells, have also proven to be difficult to perform. The genetic risk of T1D is associated with the HLA gene region but the environmental factors also play an important role. The most studied environmental risk factors of T1D are enteroviruses and cow's milk which both affect the immune system through the gut. One hypothesis is that the insulin-specific immune response develops against bovine insulin in cow's milk during early infancy and later spreads to include human insulin. The aims of this study were to determine whether the separation of immunoglobulin (Ig)G from plasma would improve the sensitivity of the IAA assay and how insulin treatment affects the cellular immune response to insulin in newly diagnosed patients. Furthermore, the effect of insulin concentration in mother's breast milk on the development of antibodies to dietary insulin in the child was examined. Small intestinal biopsies were also obtained from children with T1D to characterize any immunological changes associated with T1D in the gut. The isolation of the IgG fraction from the plasma of T1D patients negative for plasma IAA led to detectable IAA levels that exceeded those in the control children. Thus the isolation of IgG may improve the sensitivity of the IAA assay. The effect of insulin treatment on insulin-specific T-cells was studied by culturing peripheral blood mononuclear cells with insulin. The insulin stimulation induced increased expression of regulatory T-cell markers, such as Foxp3, in those patients treated with insulin than in patients examined before initiating insulin treatment. This finding suggests that insulin treatment in patients with T1D stimulates regulatory T-cells in vivo and this may partly explain the difficulties in measuring autoantigen-specific T-cell responses in recently diagnosed patients. The stimulation of regulatory T-cells by insulin treatment may also explain the remission period often seen after initiating insulin treatment. In the third study we showed that insulin concentration in mother's breast milk correlates inversely with the levels of bovine insulin-specific antibodies in those infants who were exposed to cow's milk proteins in their diet, suggesting that human insulin in breast milk induces tolerance to dietary bovine insulin. However, in infants who later developed T1D-associated autoantibodies, the insulin concentration in their mother's breast milk was increased. This finding may indicate that in those children prone to β-cell autoimmunity, breast milk insulin does not promote tolerance to insulin. In the small intestinal biopsies the presence of several immunological markers were quantified with the RT-PCR. From these markers the expression of the interleukin (IL)-18 cytokine was significantly increased in the gut in patients with T1D compared with children with celiac disease or control children. The increased IL-18 expression lends further support for the hypothesis that the gut immune system is involved in the pathogenesis of T1D.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Platelet endothelial cell adhesion molecule 1 (PECAM-1) (CD31), a member of the immunoglobulin (Ig) superfamily of cell adhesion molecules with six Ig-like domains, has a range of functions, notably its contributions to leukocyte extravasation during inflammation and in maintaining vascular endothelial integrity. Although PECAM-1 is known to mediate cell adhesion by homophilic binding via domain 1, a number of PECAM-1 heterophilic ligands have been proposed. Here, the possibility that heparin and heparan sulfate (HS) are ligands for PECAM-1 was reinvestigated. The extracellular domain of PECAM-1 was expressed first as a fusion protein with the Fc region of human IgG1 fused to domain 6 and second with an N-terminal Flag tag on domain 1 (Flag-PECAM-1). Both proteins bound heparin immobilized on a biosensor chip in surface plasmon resonance (SPR) binding experiments. Binding was pH-sensitive but is easily measured at slightly acidic pH. A series of PECAM-1 domain deletions, prepared in both expression systems, were tested for heparin binding. This revealed that the main heparin-binding site required both domains 2 and 3. Flag-PECAM-1 and a Flag protein containing domains 1-3 bound HS on melanoma cell surfaces, but a Flag protein containing domains 1-2 did not. Heparin oligosaccharides inhibited Flag-PECAM-1 from binding immobilized heparin, with certain structures having greater inhibitory activity than others. Molecular modeling similarly identified the junction of domains 2 and 3 as the heparin-binding site and further revealed the importance of the iduronic acid conformation for binding. PECAM-1 does bind heparin/HS but by a site that is distinct from that required for homophilic binding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Platelet endothelial cell adhesion molecule 1 (PECAM-1) has many functions, including its roles in leukocyte extravasation as part of the inflammatory response and in the maintenance of vascular integrity through its contribution to endothelial cell−cell adhesion. PECAM-1 has been shown to mediate cell−cell adhesion through homophilic binding events that involve interactions between domain 1 of PECAM-1 molecules on adjacent cells. However, various heterophilic ligands of PECAM-1 have also been proposed. The possible interaction of PECAM-1 with glycosaminoglycans (GAGs) is the focus of this study. The three-dimensional structure of the extracellular immunoglobulin (Ig) domains of PECAM-1 were constructed using homology modeling and threading methods. Potential heparin/heparan sulfate-binding sites were predicted on the basis of their amino acid consensus sequences and a comparison with known structures of sulfate-binding proteins. Heparin and other GAG fragments have been docked to investigate the structural determinants of their protein-binding specificity and selectivity. The modeling has predicted two regions in PECAM-1 that appear to bind heparin oligosaccharides. A high-affinity binding site was located in Ig domains 2 and 3, and evidence for a low-affinity site in Ig domains 5 and 6 was obtained. These GAG-binding regions were distinct from regions involved in PECAM-1 homophilic interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Facile synthesis of biaryl pyrazole sulfonamide derivative of 5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxylic acid piperidin-1-ylamide (SR141716, 1) and an investigation of the effect of replacement of the –CO group in the compound 1 by the –SO2 group in the aminopiperidine region is reported. Primary ex-vivo pharmacological testing and in vitro screening of sulfonamide derivative 2 showed the loss of CB1 receptor antagonism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three-dimensional QSAR studies for N-4-arylacryloylpiperazin-1-yl-phenyl-oxazolidinones were conducted using TSAR 3.3. The in vitro activities (MICs) of the compounds against Staphylococcus aureus ATCC 25923 exhibited a strong correlation with the prediction made by the model developed in the present study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Design and synthesis of a novel 3-hydroxy-cyclobut-3-ene-1,2-dione derivatives are reported and their in vitro thyroid hormone receptor selectivity has been evaluated in the thyroid luciferase receptor assay. The 3-[3,5-dichloro-4-(4-hydroxy-3-isopropylphenoxy)-phenylamino]-4-hydroxy-cyclobut-3-ene-1,2-dione 21 has shown selectivity towards thyroid hormone receptor β.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Highly stereoselective syntheses of two C-12 chiral synthons 3 and 9, mentioned in the title, starting from the monoterpenes R-1 imonene and R-carvone, using radical cyc 1 sation as key reaction, are described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proximity of molecules is a crucial factor in many solid- state photochemical processes.'S2 The biomolecular photodimerization reactions in the solid state depend on the relative geometry of reactant molecules in the crystal lattice with center-to-center distance of nearest neighbor double bonds of the order of ca. 4 A. This fact emanates from the incisive studies of Schmidt and Cohen.2 One of the two approaches to achieve this distance requirement is the so-called "Crystal-Engineering" of structures, which essentially involves the introduction of certain functional groups that display in-plane interstacking interactions (Cl...Cl, C-He-0, etc.) in the crystal The chloro group is by far the most successful in promoting the /3- packing m ~ d e ,th~o,u~gh recent studies have shown its limitations? Another approach involves the use of constrained media in which the reactants could hopefully be aligned.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The blood vascular system is a closed circulatory system, responsible for delivering oxygen and nutrients to the tissues. In contrast, the lymphatic vascular system is a blind-ended transport system that collects the extravasated tissue fluid from the capillary beds, and transports it back to the blood circulation. Failure in collecting or transporting the lymph, due to defects in the lymphatic vasculature, leads to accumulation of extra fluid in the tissues, and consequently to tissue swelling lymphedema. The two vascular systems function in concert. They are structurally related, but their development is regulated by separate, however overlapping, molecular mechanisms. During embryonic development, blood vessels are formed by vasculogenesis and angiogenesis, processes largely mediated by members of the vascular endothelial growth factor (VEGF) family and their tyrosine kinase receptors. The lymphatic vessels are formed after the cardiovascular system is already functional. This process, called lymphangiogenesis, is controlled by distinct members of the VEGF family, together with the transcription factors Prox1 and Sox18. After the primary formation of the vessels, the vasculature needs to mature and remodel into a functional network of hierarchically organized vessels: the blood vasculature into arteries, capillaries and veins; and the lymphatic vasculature into lymphatic capillaries, responsible for the uptake of the extravasated fluid from the tissues, and collecting vessels, responsible for the transport of the lymph back to the blood circulation. A major event in the maturation of the lymphatic vasculature is the formation of collecting lymphatic vessels. These vessels are characterized by the presence of intraluminal valves, preventing backflow of the lymph, and a sparse coverage of smooth muscle cells, which help in pumping the lymph forward. In our study, we have characterized the molecular and morphological events leading to formation of collecting lymphatic vessels. We found that this process is regulated cooperatively by the transcription factors Foxc2 and NFATc1. Mice lacking either Foxc2 or active NFATc1 fail to remodel the primary lymphatic plexus into functional lymphatic capillaries and collecting vessels. The resulting vessels lack valves, display abnormal expression of lymphatic molecules, and are hyperplastic. Moreover, the lymphatic capillaries show aberrant sprouting, and are abnormally covered with smooth muscle cells. In humans, mutations in FOXC2 lead to Lymphedema-Distichiasis (LD), a disabling disease characterized by swelling of the limbs due to insufficient lymphatic function. Our results from Foxc2 mutant mice and LD patients indicate that the underlying cause for lymphatic failure in LD is agenesis of collecting lymphatic valves and aberrant recruitment of periendothelial cells and basal lamina components to lymphatic capillaries. Furthermore, we show that liprin β1, a poorly characterized member of the liprin family of cytoplasmic proteins, is highly expressed in lymphatic endothelial cells in vivo, and is required for lymphatic vessel integrity. These data highlight the important role of FOXC2, NFATc1 and liprin β1 in the regulation of lymphatic development, specifically in the maturation and formation of the collecting lymphatic vessels. As damage to collecting vessels is a major cause of lymphatic dysfunction in humans, our results also suggest that FOXC2 and NFATc1 are potential targets for therapeutic intervention.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the title compound, C15H21BrN4O6S, all three NH groups are involved in intermolecular N-H center dot center dot center dot O interactions which, together with two intermolecular C-H center dot center dot center dot O contacts, lead to a continuous antiparallel beta-sheet structure. There are no pi-pi interactions between molecules, and two C-H center dot center dot center dot pi interactions primarily govern the linkage between sheets.