997 resultados para 13627-005


Relevância:

10.00% 10.00%

Publicador:

Resumo:

An improved technique for 3D head tracking under varying illumination conditions is proposed. The head is modeled as a texture mapped cylinder. Tracking is formulated as an image registration problem in the cylinder's texture map image. The resulting dynamic texture map provides a stabilized view of the face that can be used as input to many existing 2D techniques for face recognition, facial expressions analysis, lip reading, and eye tracking. To solve the registration problem in the presence of lighting variation and head motion, the residual error of registration is modeled as a linear combination of texture warping templates and orthogonal illumination templates. Fast and stable on-line tracking is achieved via regularized, weighted least squares minimization of the registration error. The regularization term tends to limit potential ambiguities that arise in the warping and illumination templates. It enables stable tracking over extended sequences. Tracking does not require a precise initial fit of the model; the system is initialized automatically using a simple 2D face detector. The only assumption is that the target is facing the camera in the first frame of the sequence. The formulation is tailored to take advantage of texture mapping hardware available in many workstations, PC's, and game consoles. The non-optimized implementation runs at about 15 frames per second on a SGI O2 graphic workstation. Extensive experiments evaluating the effectiveness of the formulation are reported. The sensitivity of the technique to illumination, regularization parameters, errors in the initial positioning and internal camera parameters are analyzed. Examples and applications of tracking are reported.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper focuses on an efficient user-level method for the deployment of application-specific extensions, using commodity operating systems and hardware. A sandboxing technique is described that supports multiple extensions within a shared virtual address space. Applications can register sandboxed code with the system, so that it may be executed in the context of any process. Such code may be used to implement generic routines and handlers for a class of applications, or system service extensions that complement the functionality of the core kernel. Using our approach, application-specific extensions can be written like conventional user-level code, utilizing libraries and system calls, with the advantage that they may be executed without the traditional costs of scheduling and context-switching between process-level protection domains. No special hardware support such as segmentation or tagged translation look-aside buffers (TLBs) is required. Instead, our ``user-level sandboxing'' mechanism requires only paged-based virtual memory support, given that sandboxed extensions are either written by a trusted source or are guaranteed to be memory-safe (e.g., using type-safe languages). Using a fast method of upcalls, we show how our mechanism provides significant performance improvements over traditional methods of invoking user-level services. As an application of our approach, we have implemented a user-level network subsystem that avoids data copying via the kernel and, in many cases, yields far greater network throughput than kernel-level approaches.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract—Personal communication devices are increasingly being equipped with sensors that are able to passively collect information from their surroundings – information that could be stored in fairly small local caches. We envision a system in which users of such devices use their collective sensing, storage, and communication resources to query the state of (possibly remote) neighborhoods. The goal of such a system is to achieve the highest query success ratio using the least communication overhead (power). We show that the use of Data Centric Storage (DCS), or directed placement, is a viable approach for achieving this goal, but only when the underlying network is well connected. Alternatively, we propose, amorphous placement, in which sensory samples are cached locally and informed exchanges of cached samples is used to diffuse the sensory data throughout the whole network. In handling queries, the local cache is searched first for potential answers. If unsuccessful, the query is forwarded to one or more direct neighbors for answers. This technique leverages node mobility and caching capabilities to avoid the multi-hop communication overhead of directed placement. Using a simplified mobility model, we provide analytical lower and upper bounds on the ability of amorphous placement to achieve uniform field coverage in one and two dimensions. We show that combining informed shuffling of cached samples upon an encounter between two nodes, with the querying of direct neighbors could lead to significant performance improvements. For instance, under realistic mobility models, our simulation experiments show that amorphous placement achieves 10% to 40% better query answering ratio at a 25% to 35% savings in consumed power over directed placement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A key goal of behavioral and cognitive neuroscience is to link brain mechanisms to behavioral functions. The present article describes recent progress towards explaining how the visual cortex sees. Visual cortex, like many parts of perceptual and cognitive neocortex, is organized into six main layers of cells, as well as characteristic sub-lamina. Here it is proposed how these layered circuits help to realize the processes of developement, learning, perceptual grouping, attention, and 3D vision through a combination of bottom-up, horizontal, and top-down interactions. A key theme is that the mechanisms which enable developement and learning to occur in a stable way imply properties of adult behavior. These results thus begin to unify three fields: infant cortical developement, adult cortical neurophysiology and anatomy, and adult visual perception. The identified cortical mechanisms promise to generalize to explain how other perceptual and cognitive processes work.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Perceptual grouping is well-known to be a fundamental process during visual perception, notably grouping across scenic regions that do not receive contrastive visual inputs. Illusory contours are a classical example of such groupings. Recent psychophysical and neurophysiological evidence have shown that the grouping process can facilitate rapid synchronization of the cells that are bound together by a grouping, even when the grouping must be completed across regions that receive no contrastive inputs. Synchronous grouping can hereby bind together different object parts that may have become desynchronized due to a variety of factors, and can enhance the efficiency of cortical transmission. Neural models of perceptual grouping have clarified how such fast synchronization may occur by using bipole grouping cells, whose predicted properties have been supported by psychophysical, anatomical, and neurophysiological experiments. These models have not, however, incorporated some of the realistic constraints on which groupings in the brain are conditioned, notably the measured spatial extent of long-range interactions in layer 2/3 of a grouping network, and realistic synaptic and axonal signaling delays within and across cells in different cortical layers. This work addresses the question: Can long-range interactions that obey the bipole constraint achieve fast synchronization under realistic anatomical and neurophysiological constraints that initially desynchronize grouping signals? Can the cells that synchronize retain their analog sensitivity to changing input amplitudes? Can the grouping process complete and synchronize illusory contours across gaps in bottom-up inputs? Our simulations show that the answer to these questions is Yes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The "teaching signal" that modulates reinforcement learning at cortico-striatal synapses may be a sequence composed of an adaptively scaled DA burst, a brief ACh burst, and a scaled ACh pause. Such an interpretation is consistent with recent data on cholinergic interneurons of the striatum are tonically active neurons (TANs) that respond with characteristic pauses to novel events and to appetitive and aversive conditioned stimuli. Fluctuations in acetylcholine release by TANs modulate performance- and learning- related dynamics in the striatum. Whereas tonic activity emerges from intrinsic properties of these neurons, glutamatergic inputs from thalamic centromedian-parafascicular nuclei, and dopaminergic inputs from midbrain are required for the generation of pause responses. No prior computational models encompass both intrinsic and synaptically-gated dynamics. We present a mathematical model that robustly accounts for behavior-related electrophysiological properties of TANs in terms of their intrinsic physiological properties and known afferents. In the model balanced intrinsic hyperpolarizing and depolarizing currents engender tonic firing, and glutamatergic inputs from thalamus (and cortex) both directly excite and indirectly inhibit TANs. If the latter inhibition, probably mediated by GABAergic NOS interneurons, exceeds a threshold, its effect is amplified by a KIR current to generate a prolongued pause. In the model, the intrinsic mechanisms and external inputs are both modulated by learning-dependent dopamine (DA) signals and our simulations revealed that many learning-dependent behaviors of TANs are explicable without recourse to learning-dependent changes in synapses onto TANs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A neural model is developed to explain how humans can approach a goal object on foot while steering around obstacles to avoid collisions in a cluttered environment. The model uses optic flow from a 3D virtual reality environment to determine the position of objects based on motion discontinuities, and computes heading direction, or the direction of self-motion, from global optic flow. The cortical representation of heading interacts with the representations of a goal and obstacles such that the goal acts as an attractor of heading, while obstacles act as repellers. In addition the model maintains fixation on the goal object by generating smooth pursuit eye movements. Eye rotations can distort the optic flow field, complicating heading perception, and the model uses extraretinal signals to correct for this distortion and accurately represent heading. The model explains how motion processing mechanisms in cortical areas MT, MST, and posterior parietal cortex can be used to guide steering. The model quantitatively simulates human psychophysical data about visually-guided steering, obstacle avoidance, and route selection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An active, attentionally-modulated recognition architecture is proposed for object recognition and scene analysis. The proposed architecture forms part of navigation and trajectory planning modules for mobile robots. Key characteristics of the system include movement planning and execution based on environmental factors and internal goal definitions. Real-time implementation of the system is based on space-variant representation of the visual field, as well as an optimal visual processing scheme utilizing separate and parallel channels for the extraction of boundaries and stimulus qualities. A spatial and temporal grouping module (VWM) allows for scene scanning, multi-object segmentation, and featural/object priming. VWM is used to modulate a tn~ectory formation module capable of redirecting the focus of spatial attention. Finally, an object recognition module based on adaptive resonance theory is interfaced through VWM to the visual processing module. The system is capable of using information from different modalities to disambiguate sensory input.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hippocampus participates in multiple functions, including spatial navigation, adaptive timing, and declarative (notably, episodic) memory. How does it carry out these particular functions? The present article proposes that hippocampal spatial and temporal processing are carried out by parallel circuits within entorhinal cortex, dentate gyrus, and CA3 that are variations of the same circuit design. In particular, interactions between these brain regions transform fine spatial and temporal scales into population codes that are capable of representing the much larger spatial and temporal scales that are needed to control adaptive behaviors. Previous models of adaptively timed learning propose how a spectrum of cells tuned to brief but different delays are combined and modulated by learning to create a population code for controlling goal-oriented behaviors that span hundreds of milliseconds or even seconds. Here it is proposed how projections from entorhinal grid cells can undergo a similar learning process to create hippocampal place cells that can cover a space of many meters that are needed to control navigational behaviors. The suggested homology between spatial and temporal processing may clarify how spatial and temporal information may be integrated into an episodic memory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article describes further evidence for a new neural network theory of biological motion perception that is called a Motion Boundary Contour System. This theory clarifies why parallel streams Vl-> V2 and Vl-> MT exist for static form and motion form processing among the areas Vl, V2, and MT of visual cortex. The Motion Boundary Contour System consists of several parallel copies, such that each copy is activated by a different range of receptive field sizes. Each copy is further subdivided into two hierarchically organized subsystems: a Motion Oriented Contrast Filter, or MOC Filter, for preprocessing moving images; and a Cooperative-Competitive Feedback Loop, or CC Loop, for generating emergent boundary segmentations of the filtered signals. The present article uses the MOC Filter to explain a variety of classical and recent data about short-range and long-range apparent motion percepts that have not yet been explained by alternative models. These data include split motion; reverse-contrast gamma motion; delta motion; visual inertia; group motion in response to a reverse-contrast Ternus display at short interstimulus intervals; speed-up of motion velocity as interfiash distance increases or flash duration decreases; dependence of the transition from element motion to group motion on stimulus duration and size; various classical dependencies between flash duration, spatial separation, interstimulus interval, and motion threshold known as Korte's Laws; and dependence of motion strength on stimulus orientation and spatial frequency. These results supplement earlier explanations by the model of apparent motion data that other models have not explained; a recent proposed solution of the global aperture problem, including explanations of motion capture and induced motion; an explanation of how parallel cortical systems for static form perception and motion form perception may develop, including a demonstration that these parallel systems are variations on a common cortical design; an explanation of why the geometries of static form and motion form differ, in particular why opposite orientations differ by 90°, whereas opposite directions differ by 180°, and why a cortical stream Vl -> V2 -> MT is needed; and a summary of how the main properties of other motion perception models can be assimilated into different parts of the Motion Boundary Contour System design.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article compares the performance of Fuzzy ARTMAP with that of Learned Vector Quantization and Back Propagation on a handwritten character recognition task. Training with Fuzzy ARTMAP to a fixed criterion used many fewer epochs. Voting with Fuzzy ARTMAP yielded the highest recognition rates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The atom pencil we describe here is a versatile tool that writes arbitrary structures by atomic deposition in a serial lithographic process. This device consists of a transversely laser-cooled and collimated cesium atomic beam that passes through a 4-pole atom-flux concentrator and impinges on to micron- and sub-micron-sized apertures. The aperture translates above a fixed substrate and enables the writing of sharp features with sizes down to 280 nm. We have investigated the writing and clogging properties of an atom pencil tip fabricated from silicon oxide pyramids perforated at the tip apex with a sub-micron aperture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To investigate women’s help seeking behavior (HSB) following self discovery of a breast symptom and determine the associated influencing factors. A descriptive correlation design was used to ascertain the help seeking behavior (HSB) and the associated influencing factors of a sample of women (n = 449) with self discovered breast symptoms. The study was guided by the ‘Help Seeking Behaviour and Influencing Factors” conceptual framework (Facione et al., 2002; Meechan et al., 2003, 2002; Leventhal, Brissette and Leventhal, 2003 and O’Mahony and Hegarty, 2009b). Data was collected using a researcher developed multi-scale questionnaire package to ascertain women’s help seeking behavior on self discovery of a breast symptom and determine the factors most associated with HSB. Factors examined include: socio-demographics, knowledge and beliefs (regarding breast symptom; breast changes associated with breast cancer; use of alternative help seeking behaviours and presence or absence of a family history of breast cancer),emotional responses, social factors, health seeking habits and health service system utilization and help seeking behavior. A convenience sample (n = 449 was obtained by the researcher from amongst women attending the breast clinics of two large urban hospitals within the Republic of Ireland. All participants had self-discovered breast symptoms and no previous history of breast cancer. The study identified that while the majority of women (69.9%; n=314) sought help within one month, 30.1% (n=135) delayed help seeking for more than one month following self discovery of their breast symptom. The factors most significantly associated with HSB were the presenting symptom of ‘nipple indrawn/changes’ (p = 0.005), ‘ignoring the symptom and hoping it would go away’ (p < 0.001), the emotional response of being ‘afraid@ on symptom discovery (p = 0.005) and the perception/belief in longer symptom duration (p = 0.023). It was found that women who presented with an indrawn/changed nipple were more likely to delay (OR = 4.81) as were women who ‘ignored the symptoms and hoped it would go away’ (OR = 10.717). Additionally, the longer women perceived that their symptom would last, they more likely they were to delay (OR = 1.18). Conversely, being afraid following symptom discovery was associated with less delay (OR = 0.37; p=0.005). This study provides further insight into the HSB of women who self discovered breast symptoms. It highlights the complexity of the help seeking process, indicating that is not a linear event but is influenced by multiple factors which can have a significant impact on the outcomes in terms of whether women delay or seek help promptly. The study further demonstrates that delayed HSB persists amongst women with self discovered breast symptoms. This has important implications for continued emphasis on the promotion of breast awareness, prompt help seeking for self discovered breast symptoms and early detection and treatment of breast cancer, amongst women of all ages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The standard early markers for identifying and grading HIE severity, are not sufficient to ensure all children who would benefit from treatment are identified in a timely fashion. The aim of this thesis was to explore potential early biomarkers of HIE. Methods: To achieve this a cohort of infants with perinatal depression was prospectively recruited. All infants had cord blood samples drawn and biobanked, and were assessed with standardised neurological examination, and early continuous multi-channel EEG. Cord samples from a control cohort of healthy infants were used for comparison. Biomarkers studied included; multiple inflammatory proteins using multiplex assay; the metabolomics profile using LC/MS; and the miRNA profile using microarray. Results: Eighty five infants with perinatal depression were recruited. Analysis of inflammatory proteins consisted of exploratory analysis of 37 analytes conducted in a sub-population, followed by validation of all significantly altered analytes in the remaining population. IL-6 and IL-6 differed significantly in infants with a moderate/severely abnormal vs. a normal-mildly abnormal EEG in both cohorts (Exploratory: p=0.016, p=0.005: Validation: p=0.024, p=0.039; respectively). Metabolomic analysis demonstrated a perturbation in 29 metabolites. A Cross- validated Partial Least Square Discriminant Analysis model was developed, which accurately predicted HIE with an AUC of 0.92 (95% CI: 0.84-0.97). Analysis of the miRNA profile found 70 miRNA significantly altered between moderate/severely encephalopathic infants and controls. miRNA target prediction databases identified potential targets for the altered miRNA in pathways involved in cellular metabolism, cell cycle and apoptosis, cell signaling, and the inflammatory cascade. Conclusion: This thesis has demonstrated that the recruitment of a large cohortof asphyxiated infants, with cord blood carefully biobanked, and detailed early neurophysiological and clinical assessment recorded, is feasible. Additionally the results described, provide potential alternate and novel blood based biomarkers for the identification and assessment of HIE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vietnam launched its first-ever stock market, named as Ho Chi Minh City Securities Trading Center (HSTC) on July 20, 2000. This is one of pioneering works on HSTC, which finds empirical evidences for the following: Anomalies of the HSTC stock returns through clusters of limit-hits, limit-hit sequences; Strong herd effect toward extreme positive returns of the market portfolio;The specification of ARMA-GARCH helps capture fairly well issues such as serial correlations and fat-tailed for the stabilized period. By using further information and policy dummy variables, it is justifiable that policy decisions on technicalities of trading can have influential impacts on the move of risk level, through conditional variance behaviors of HSTC stock returns. Policies on trading and disclosure practices have had profound impacts on Vietnam Stock Market (VSM). The over-using of policy tools can harm the market and investing mentality. Price limits become increasingly irrelevant and prevent the market from self-adjusting to equilibrium. These results on VSM have not been reported before in the literature on Vietnam’s financial markets. Given the policy implications, we suggest that the Vietnamese authorities re-think the use of price limit and give more freedom to market participants.