914 resultados para 120402 Engineering Design Knowledge
Resumo:
Filtration is a widely used unit operation in chemical engineering. The huge variation in the properties of materials to be ltered makes the study of ltration a challenging task. One of the objectives of this thesis was to show that conventional ltration theories are di cult to use when the system to be modelled contains all of the stages and features that are present in a complete solid/liquid separation process. Furthermore, most of the ltration theories require experimental work to be performed in order to obtain critical parameters required by the theoretical models. Creating a good overall understanding of how the variables a ect the nal product in ltration is somewhat impossible on a purely theoretical basis. The complexity of solid/liquid separation processes require experimental work and when tests are needed, it is advisable to use experimental design techniques so that the goals can be achieved. The statistical design of experiments provides the necessary tools for recognising the e ects of variables. It also helps to perform experimental work more economically. Design of experiments is a prerequisite for creating empirical models that can describe how the measured response is related to the changes in the values of the variable. A software package was developed that provides a ltration practitioner with experimental designs and calculates the parameters for linear regression models, along with the graphical representation of the responses. The developed software consists of two software modules. These modules are LTDoE and LTRead. The LTDoE module is used to create experimental designs for di erent lter types. The lter types considered in the software are automatic vertical pressure lter, double-sided vertical pressure lter, horizontal membrane lter press, vacuum belt lter and ceramic capillary action disc lter. It is also possible to create experimental designs for those cases where the variables are totally user de ned, say for a customized ltration cycle or di erent piece of equipment. The LTRead-module is used to read the experimental data gathered from the experiments, to analyse the data and to create models for each of the measured responses. Introducing the structure of the software more in detail and showing some of the practical applications is the main part of this thesis. This approach to the study of cake ltration processes, as presented in this thesis, has been shown to have good practical value when making ltration tests.
Resumo:
Bone strain plays a major role as the activation signal for the bone (re)modeling process, which is vital for keeping bones healthy. Maintaining high bone mineral density reduces the chances of fracture in the event of an accident. Numerous studies have shown that bones can be strengthened with physical exercise. Several hypotheses have asserted that a stronger osteogenic (bone producing) effect results from dynamic exercise than from static exercise. These previous studies are based on short-term empirical research, which provide the motivation for justifying the experimental results with a solid mathematical background. The computer simulation techniques utilized in this work allow for non-invasive bone strain estimation during physical activity at any bone site within the human skeleton. All models presented in the study are threedimensional and actuated by muscle models to replicate the real conditions accurately. The objective of this work is to determine and present loading-induced bone strain values resulting from physical activity. It includes a comparison of strain resulting from four different gym exercises (knee flexion, knee extension, leg press, and squat) and walking, with the results reported for walking and jogging obtained from in-vivo measurements described in the literature. The objective is realized primarily by carrying out flexible multibody dynamics computer simulations. The dissertation combines the knowledge of finite element analysis and multibody simulations with experimental data and information available from medical field literature. Measured subject-specific motion data was coupled with forward dynamics simulation to provide natural skeletal movement. Bone geometries were defined using a reverse engineering approach based on medical imaging techniques. Both computed tomography and magnetic resonance imaging were utilized to explore modeling differences. The predicted tibia bone strains during walking show good agreement with invivo studies found in the literature. Strain measurements were not available for gym exercises; therefore, the strain results could not be validated. However, the values seem reasonable when compared to available walking and running invivo strain measurements. The results can be used for exercise equipment design aimed at strengthening the bones as well as the muscles during workout. Clinical applications in post fracture recovery exercising programs could also be the target. In addition, the methodology introduced in this study, can be applied to investigate the effect of weightlessness on astronauts, who often suffer bone loss after long time spent in the outer space.
Resumo:
This thesis work describes the creation of a pipework data structure for design system integration. Work is completed in pulp and paper plant delivery company with global engineering network operations in mind. User case of process design to 3D pipework design is introduced with influence of subcontracting engineering offices. Company data element list is gathered by using key person interviews and results are processed into a pipework data element list. Inter-company co-operation is completed in standardization association and common standard for pipework data elements is found. As result inter-company created pipework data element list is introduced. Further list usage, development and relations to design software vendors are evaluated.
Resumo:
This research is a survey on values related to entrepreneurship education and a participatory action research on entrepreneurship education curricula in teacher education. Research problems, rising from the practical development work, were solved by several methods, following the principles of design-based research. Values related to entrepreneurship education were studied among teachers, headmasters, teacher educators, researchers and officers in the field of entrepreneurship education in 16 European Union countries. Fifteen most important values related to entrepreneurship education were listed based on two qualitative surveys (N 124 and N 66). Values were also surveyed among Finnish teacher trainees (N 71). Results of the surveys show that the values given by the teacher trainees did not differ much from the ones given by the professionals already working in the field. Subsequently, emergence of these values was studied in documents that steer education. The values gathered in the surveys did not occur in the documents to a substantial degree. Development of entrepreneurship education curricula in teacher education was conducted by means of participatory action research. The development project gathered 55 teacher trainers from 15 teacher education organisations in Finland. The starting point of the phenomenon based project (see Annala and Mäkinen 2011) was the activity plan created for developing entrepreneurship education curricula. During the project, the learning of the teacher educators proceeded in a balanced way as brightening visions, stronger motivation, increasing understanding and new practices, following Shulman and Shulman’s model (2004). Goals of the development project were set to each teacher educator acquiring basic knowledge on entrepreneurship education, organization of obligatory courses on entrepreneurship education, and making entrepreneurship education a cross-curricular theme in teacher education. The process increased the understanding and motivation of teacher educators to develop and teach entrepreneurship education. It also facilitated collaboration as well as creating visions on entrepreneurship education. Based on the results, the concept of enterprisingness was defined, and recommendations were given for developing curricula in entrepreneurship education.
Resumo:
In this paper a computer program to model and support product design is presented. The product is represented through a hierarchical structure that allows the user to navigate across the products components, and it aims at facilitating each step of the detail design process. A graphical interface was also developed, which shows visually to the user the contents of the product structure. Features are used as building blocks for the parts that compose the product, and object-oriented methodology was used as a means to implement the product structure. Finally, an expert system was also implemented, whose knowledge base rules help the user design a product that meets design and manufacturing requirements.
Improving the competitiveness of electrolytic Zinc process by chemical reaction engineering approach
Resumo:
This doctoral thesis describes the development work performed on the leachand purification sections in the electrolytic zinc plant in Kokkola to increase the efficiency in these two stages, and thus the competitiveness of the plant. Since metallic zinc is a typical bulk product, the improvement of the competitiveness of a plant was mostly an issue of decreasing unit costs. The problems in the leaching were low recovery of valuable metals from raw materials, and that the available technology offered complicated and expensive processes to overcome this problem. In the purification, the main problem was consumption of zinc powder - up to four to six times the stoichiometric demand. This reduced the capacity of the plant as this zinc is re-circulated through the electrolysis, which is the absolute bottleneck in a zinc plant. Low selectivity gave low-grade and low-value precipitates for further processing to metallic copper, cadmium, cobalt and nickel. Knowledge of the underlying chemistry was poor and process interruptions causing losses of zinc production were frequent. Studies on leaching comprised the kinetics of ferrite leaching and jarosite precipitation, as well as the stability of jarosite in acidic plant solutions. A breakthrough came with the finding that jarosite could precipitate under conditions where ferrite would leach satisfactorily. Based on this discovery, a one-step process for the treatment of ferrite was developed. In the plant, the new process almost doubled the recovery of zinc from ferrite in the same equipment as the two-step jarosite process was operated in at that time. In a later expansion of the plant, investment savings were substantial compared to other technologies available. In the solution purification, the key finding was that Co, Ni, and Cu formed specific arsenides in the “hot arsenic zinc dust” step. This was utilized for the development of a three-step purification stage based on fluidized bed technology in all three steps, i.e. removal of Cu, Co and Cd. Both precipitation rates and selectivity increased, which strongly decreased the zinc powder consumption through a substantially suppressed hydrogen gas evolution. Better selectivity improved the value of the precipitates: cadmium, which caused environmental problems in the copper smelter, was reduced from 1-3% reported normally down to 0.05 %, and a cobalt cake with 15 % Co was easily produced in laboratory experiments in the cobalt removal. The zinc powder consumption in the plant for a solution containing Cu, Co, Ni and Cd (1000, 25, 30 and 350 mg/l, respectively), was around 1.8 g/l; i.e. only 1.4 times the stoichiometric demand – or, about 60% saving in powder consumption. Two processes for direct leaching of the concentrate under atmospheric conditions were developed, one of which was implemented in the Kokkola zinc plant. Compared to the existing pressure leach technology, savings were obtained mostly in investment. The scientific basis for the most important processes and process improvements is given in the doctoral thesis. This includes mathematical modeling and thermodynamic evaluation of experimental results and hypotheses developed. Five of the processes developed in this research and development program were implemented in the plant and are still operated. Even though these processes were developed with the focus on the plant in Kokkola, they can also be implemented at low cost in most of the zinc plants globally, and have thus a great significance in the development of the electrolytic zinc process in general.
Resumo:
This study combines several projects related to the flows in vessels with complex shapes representing different chemical apparata. Three major cases were studied. The first one is a two-phase plate reactor with a complex structure of intersecting micro channels engraved on one plate which is covered by another plain plate. The second case is a tubular microreactor, consisting of two subcases. The first subcase is a multi-channel two-component commercial micromixer (slit interdigital) used to mix two liquid reagents before they enter the reactor. The second subcase is a micro-tube, where the distribution of the heat generated by the reaction was studied. The third case is a conventionally packed column. However, flow, reactions or mass transfer were not modeled. Instead, the research focused on how to describe mathematically the realistic geometry of the column packing, which is rather random and can not be created using conventional computeraided design or engineering (CAD/CAE) methods. Several modeling approaches were used to describe the performance of the processes in the considered vessels. Computational fluid dynamics (CFD) was used to describe the details of the flow in the plate microreactor and micromixer. A space-averaged mass transfer model based on Fick’s law was used to describe the exchange of the species through the gas-liquid interface in the microreactor. This model utilized data, namely the values of the interfacial area, obtained by the corresponding CFD model. A common heat transfer model was used to find the heat distribution in the micro-tube. To generate the column packing, an additional multibody dynamic model was implemented. Auxiliary simulation was carried out to determine the position and orientation of every packing element in the column. This data was then exported into a CAD system to generate desirable geometry, which could further be used for CFD simulations. The results demonstrated that the CFD model of the microreactor could predict the flow pattern well enough and agreed with experiments. The mass transfer model allowed to estimate the mass transfer coefficient. Modeling for the second case showed that the flow in the micromixer and the heat transfer in the tube could be excluded from the larger model which describes the chemical kinetics in the reactor. Results of the third case demonstrated that the auxiliary simulation could successfully generate complex random packing not only for the column but also for other similar cases.
Resumo:
Middle section module of InnoTrackTM moving walk was re-engineered according to value analysis process. Self-supporting steel structure for moving walk was created as a result of this process. Designed structure was verified and validated by prototype tests and finite element method calculations. Self-supporting steel structure replaces the original design of middle section module in InnoTrackTM. Designed structure provides higher satisfaction to customers’ needs and at the same time, it uses less resources. The redesigned middle section module provides higher value to the customer.
Resumo:
The importance of after-sales service or service in general can be seen and experienced by customers every day with industrial as well as other non-industrial services or products. This dissertation, drawing on theory and experience, focuses on practical engineering implications, specifically the management of customer issues in the after-sales phase in the mobile phone arena. The main objective of this doctoral dissertation is to investigate customer after-sales issue management, specifically regarding mobile phones. The case studies focus on issue resolution time and the issue of corrective actions. This dissertation consists of a main body and four peer-reviewed journal articles and one manuscript currently under review by a peer-reviewed journal. The main body of this dissertation examines the elements of customer satisfaction, loyalty, and retention with respect to corrective actions to address customer issues and issue resolution time through literature and empirical studies. The five independent works are case studies supporting the thesis research questions. This study examines four questions: 1) What are the factors affecting corrective actions for customers? 2) How can customer issue resolution time be controlled? 3) What are the factors affecting processes in the service chain? and 4) How can communication be measured in a service chain? In this work, both quantitative and qualitative analysis methods are used. The main body of the thesis reviews the literature regarding the elements that bridge the five case studies. The case studies of the articles and surveys lean more toward the methodology of critical positivism and then apply the interpretive approach in interpreting the results. The case study articles employ various statistical methods to analyze and to interpret the empirical and survey data. The statistical methods were used to create a model that is useful for significantly optimizing issue resolution time. Moreover, it was found that samples for verifying issues provided by the customer neither improve the perceived quality of corrective actions nor the perceived quality of issue resolution time. The term “service” in this work is limited to the technical services that are provided by product manufacturers and after-sales authorized service vendors. On the basis of this research work, it has been observed that corrective actions and issue resolution time are associated with customer satisfaction and hence, according to induction theory, to customer loyalty and retention. This thesis utilizes knowledge of marketing and customer relationships to contribute to the existing body of knowledge concerning information and communication technology for after-sales service recovery of mobile terminals. The established models in the thesis contribute to the existing knowledge of the after-sales process of dealing with customer issues in the field of mobile phones. The findings suggest that process managers could focus more on communication and training provided to the staff as new technology evolves rapidly. The study also suggest the managers formulate strategies for how customers can be kept informed on a regular basis of the status of issues that have been escalated for corrective action. The findings also lay the foundation for the comprehensive objective to control the entire product development process, starting with conceptualization. This implies that robust design should be applied to the new products so that problems affecting customer service quality are not repeated. The objective will be achieved when the entire service chain from product development to the final user can be modeled and this model can be used to support the organization at all levels.
Resumo:
Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Resumo:
The aim of this three phase study was to develop quality of radiotherapy care by the e-Feedback knowledge of radiotherapy -intervention (e-Re-Know). In Phase I, the purpose was to describe the quality of radiotherapy care and its deficits experienced by cancer patients. Based on the deficits in patient education in Phase II, the purpose was to describe cancer patients’ e-knowledge expectations in radiotherapy. In Phase III, the purpose was to develop and evaluate the outcomes of the e-Re-Know among breast cancer patients. The ultimate aim was to develop radiotherapy care to support patients’ empowerment with patient e-education. In Phase I (2004-2005), the descriptive design was used, and 134 radiotherapy patients evaluated their experiences by Good Nursing Care Scale for Patients (GNCS-P) in the middle of RT period. In Phase II (2006-2008), the descriptive longitudinal design was used and 100 radiotherapy patients’ e-knowledge expectations of RT were evaluated using open-ended questionnaire developed for this study before commencing first RT, in the middle of the treatment, and concluding RT period. In Phase III, firstly (2009-2010), the e-Re-Know intervention, i.e. knowledge test and feedback, was developed in terms of empowering knowledge and implemented with e-feedback approach based on literature and expert reviews. Secondly (2011-2014), the randomized controlled study was used to evaluate the e-Re-Know. Breast cancer patients randomized to either the intervention group (n=65) receiving the e-Re-Know by e-mail before commencing first RT and standard education or the control group (n=63) receiving standard education. The data were collected before commencing first RT, concluding last RT and 3 months after last RT using RT Knowledge Test, Spielberger’s State Trait Inventory (STAI) and Functional Assessment of Cancer Therapy - Breast (FACT-B) –instruments. Data were analyzed using statistical methods and content analysis. The study showed radiotherapy patients experienced quality of care high. However, there were deficits in patient education. Furthermore, radiotherapy patients’ multidimensional e-knowledge expectations through Internet covered mainly bio-physiological and functional knowledge. Thus, the e-Re-Know was developed and evaluated. The study showed when breast cancer patients’ carried out the e-Re-Know their knowledge of side effects self-care was significantly increased and quality of life (QOL) significantly improved in line with decrease in anxiety from time before radiotherapy period to three months after. In addition, the e-Re-Know has potential to have positive effects on anxiety and QOL, regardless of patient characteristics or knowledge level. The results support the theory of empowering patient education suggesting that empowerment can be supported by confirming patients’ understanding of own knowledge level. In summary, the e-Feedback knowledge of radiotherapy (e-Re-Know) intervention can be recommended in development of quality of radiotherapy care experienced by breast cancer patients. Further research is needed to assess and develop patient-centred quality of care by patient education among cancer patients.
Resumo:
Massive Open Online Courses have been in the center of attention in the recent years. However, the main problem of all online learning environments is their lack of personalization according to the learners’ knowledge, learning styles and other learning preferences. This research explores the parameters and features used for personalization in the literature and based on them, evaluates to see how well the current MOOC platforms have been personalized. Then, proposes a design framework for personalization of MOOC platforms that fulfills most of the personalization parameters in the literature including the learning style as well as personalization features. The result of an assessment made for the proposed design framework shows that the framework well supports personalization of MOOCs.
Resumo:
Deposition of bone in physiology involves timed secretion, deposition and removal of a complex array of extracellular matrix proteins which appear in a defined temporal and spatial sequence. Mineralization itself plays a role in dictating and spatially orienting the deposition of matrix. Many aspects of the physiological process are recapitulated in systems of autologous or xenogeneic transplantation of osteogenic precursor cells developed for tissue engineering or modeling. For example, deposition of bone sialoprotein, a member of the small integrin-binding ligand, N-linked glycoprotein family, represents the first step of bone formation in ectopic transplantation systems in vivo. The use of mineralized scaffolds for guiding bone tissue engineering has revealed unexpected manners in which the scaffold and cells interact with each other, so that a complex interplay of integration and disintegration of the scaffold ultimately results in efficient and desirable, although unpredictable, effects. Likewise, the manner in which biomaterial scaffolds are "resorbed" by osteoclasts in vitro and in vivo highlights more complex scenarios than predicted from knowledge of physiological bone resorption per se. Investigation of novel biomaterials for bone engineering represents an essential area for the design of tissue engineering strategies.
Resumo:
Electrical machines have significant improvement potential. Nevertheless, the field is characterized by incremental innovations. Admittedly, steady improvement has been achieved, but no breakthrough development. Radical development in the field would require the introduction of new elements, such that may change the whole electrical machine industry system. Recent technological advancements in nanomaterials have opened up new horizons for the macroscopic application of carbon nanotube (CNT) fibres. With values of 100 MS/m measured on individual CNTs, CNT fibre materials hold promise for conductivities far beyond those of metals. Highly conductive, lightweight and strong CNT yarn is finally within reach; it could replace copper as a potentially better winding material. Although not yet providing low resistivity, the newest CNT yarn offers attractive perspectives for accelerated efficiency improvement of electrical machines. In this article, the potential for using new CNT materials to replace copper in machine windings is introduced. It does so, firstly, by describing the environment for a change that could revolutionize the industry and, secondly, by presenting the breakthrough results of a prototype construction. In the test motor, which is to our knowledge the first in its kind, the presently most electrically conductive carbon nanotube yarn replaces usual copper in the windings.
Resumo:
Työn tarkoituksena on selvittää, miten DSM ja siihen liittyvät analyysit toimivat. Työssä selvitetään myös, miten DSM:a voidaan hyödyntää tuotekehityksessä ja ohjelmistotuotannon kohtaamissa ongelmissa. DSM-neliömatriisiin sijoitetaan tarkasteltavan kohteen osat riveihin ja kolumneihin identtisessä järjestyksessä. Matriisin soluihin merkitään osien väliset riippuvuudet, joilla selvitetään kunkin osan lähettämä ja vastaanottama data suhteessa muihin osiin. DSM-analyysissa osien järjestystä muutetaan suoritus- tai toteutusjärjestyksen mukaisesti parhaaseen järjestykseen. Osat ryhmitellään moduuleihin, jolloin esimerkiksi tuotekehitys ohjautuu automaattisesti modulaarisuuteen. Tuotekehitysprojekteihin DSM on kompaktin muodon, yksinkertaisuuden ja automaattisen järjestelyn ansiosta erinomainen työkalu, jolla voidaan mallintaa käytännössä mitä tahansa, mikä voidaan jakaa toisistaan riippuviin osiin. DSM voi vähentää projektien suunnitteluun vaadittua työmäärää ja avustaa realististen budjettien ja aikataulujen luontia suurissa projekteissa.