1000 resultados para Énergie de surface


Relevância:

20.00% 20.00%

Publicador:

Resumo:

AbstractOptimization of microwave drying conditions of Luvhele and Mabonde banana varieties were studied using response surface methodology. The drying was performed using a central composite rotatable design for two variables: microwave power level (100, 200 and 300 W) and drying time (40, 26, and 12 min.) for Luvhele; (100, 200 and 300 W) and (42, 27, and 12 min) for Mabonde. The colour and texture (hardness) data were analyzed using ANOVA and regression analysis. The fitness of the models obtained was good as the lack of fit for each of the models was not significant. The coefficient of determination R2 of the models was relatively high, hence the models obtained for the responses were adequate and acceptable. Drying conditions of 178.76 W, 12 min. drying time were found optimum for product quality at a desirability of 0.91 for Luvhele; while 127.67 W, 12 min. with a desirability of 0.86 was predicted for Mabonde. The result of this study could be used as a standard for microwave processing of Luvhele and Mabondebanana varieties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Caprine Coalho cheese presents great potential for a typical protected designation of origin, considering that this traditional Brazilian cheese presents a slightly salty and acid flavor, combined with a unique texture. This study optimized the HS-SPME-GC-MS methodology for volatile analysis of Coalho cheese, which can be used as a tool to help in the identification of the distinctive aroma profile of this cheese. The conditions of equilibrium time, extraction temperature and time were optimized using the statistical tool factorial experimental design 23, and applying the desirability function. After the evaluation, it was concluded that the optimum extraction conditions comprised equilibrium and extraction time of 20 and 40 minutes, respectively; and ideal extraction temperature of 45 °C. The optimum extraction of volatile compounds in goat Coalho cheese captured 32 volatile compounds: 5 alcohols, 5 esters, 3 ketones, 6 acids, 3 aldehydes, 3 terpenes, and 7 hydrocarbons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The focus of the work reported in this thesis was to study and to clarify the effect of polyelectrolyte multilayer surface treatment on inkjet ink spreading, absorption and print quality. Surface sizing with a size press, film press with a pilot scale coater, and spray coating, have been used to surface treat uncoated wood-free, experimental wood-free and pigmentcoated substrates. The role of the deposited cationic (polydiallydimethylammonium chloride, PDADMAC) and anionic (sodium carboxymethyl cellulose, NaCMC) polyelectrolyte layers with and without nanosilica, on liquid absorption and spreading was studied in terms of their interaction with water-based pigmented and dye-based inkjet inks. Contact angle measurements were made in attempt to explain the ink spreading and wetting behavior on the substrate. First, it was noticed that multilayer surface treatment decreased the contact angle of water, giving a hydrophilic character to the surface. The results showed that the number of cationic-anionic polyelectrolyte layers or the order of deposition of the polyelectrolytes had a significant effect on the print quality. This was seen for example as a higher print density on layers with a cationic polyelectrolyte in the outermost layer. The number of layers had an influence on the print quality; the print density increased with increasing number of layers, although the increase was strongly dependent on ink formulation and chemistry. The use of nanosilica clearly affected the rate of absorption of polar liquids, which also was seen as a higher density of the black dye-based print. Slightly unexpected, the use of nanosilica increased the tendency for lateral spreading of both the pigmented and dye-based inks. It was shown that the wetting behavior and wicking of the inks on the polyelectrolyte coatings was strongly affected by the hydrophobicity of the substrate, as well as by the composition or structure of the polyelectrolyte layers. Coating only with a cationic polyelectrolyte was not sufficient to improve dye fixation, but it was demonstrated that a cationic-anionic-complex structure led to good water fastness. A threelayered structure gave the same water fastness values as a five-layered structure. Interestingly, the water fastness values were strongly dependent not only on the formed cation-anion polyelectrolyte complexes but also on the tendency of the coating to dissolve during immersion in water. Results showed that by optimizing the chemistry of the layers, the ink-substrate interaction can be optimized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mesoporous metal oxides are nowadays widely used in various technological applications, for instance in catalysis, biomolecular separations and drug delivery. A popular technique used to synthesize mesoporous metal oxides is the nanocasting process. Mesoporous metal oxide replicas are obtained from the impregnation of a porous template with a metal oxide precursor followed by thermal treatment and removal of the template by etching in NaOH or HF solutions. In a similar manner to the traditional casting wherein the product inherits the features of the mold, the metal oxide replicas are supposed to have an inverse structure of the starting porous template. This is however not the case, as broken or deformed particles and other structural defects have all been experienced during nanocasting experiments. Although the nanocasting technique is widely used, not all the processing steps are well understood. Questions over the fidelity of replication and morphology control are yet to be adequately answered. This work therefore attempts to answer some of these questions by elucidating the nanocasting process, pin pointing the crucial steps involved and how to harness this knowledge in making wholesome replicas which are a true replication of the starting templates. The rich surface chemistry of mesoporous metal oxides is an important reason why they are widely used in applications such as catalysis, biomolecular separation, etc. At times the surface is modified or functionalized with organic species for stability or for a particular application. In this work, nanocast metal oxides (TiO2, ZrO2 and SnO2) and SiO2 were modified with amino-containing molecules using four different approaches, namely (a) covalent bonding of 3-aminopropyltriethoxysilane (APTES), (b) adsorption of 2-aminoethyl dihydrogen phosphate (AEDP), (c) surface polymerization of aziridine and (d) adsorption of poly(ethylenimine) (PEI) through electrostatic interactions. Afterwards, the hydrolytic stability of each functionalization was investigated at pH 2 and 10 by zeta potential measurements. The modifications were successful except for the AEDP approach which was unable to produce efficient amino-modification on any of the metal oxides used. The APTES, aziridine and PEI amino-modifications were fairly stable at pH 10 for all the metal oxides tested while only AZ and PEI modified-SnO2 were stable at pH 2 after 40 h. Furthermore, the functionalized metal oxides (SiO2, Mn2O3, ZrO2 and SnO2) were packed into columns for capillary liquid chromatography (CLC) and capillary electrochromatography (CEC). Among the functionalized metal oxides, aziridinefunctionalized SiO2, (SiO2-AZ) showed good chemical stability, and was the most useful packing material in both CLC and CEC. Lastly, nanocast metal oxides were synthesized for phosphopeptide enrichment which is a technique used to enrich phosphorylated proteins in biological samples prior to mass spectrometry analysis. By using the nanocasting technique to prepare the metal oxides, the surface area was controlled within a range of 42-75 m2/g thereby enabling an objective comparison of the metal oxides. The binding characteristics of these metal oxides were compared by using samples with different levels of complexity such as synthetic peptides and cell lysates. The results show that nanocast TiO2, ZrO2, Fe2O3 and In2O3 have comparable binding characteristics. Furthermore, In2O3 which is a novel material in phosphopeptide enrichment applications performed comparably with standard TiO2 which is the benchmark for such phosphopeptide enrichment procedures. The performance of the metal oxides was explained by ranking the metal oxides according to their isoelectric points and acidity. Overall, the clarification of the nanocasting process provided in this work will aid the synthesis of metal oxides with true fidelity of replication. Also, the different applications of the metal oxides based on their surface interactions and binding characteristics show the versatility of metal oxide materials. Some of these results can form the basis from which further applications and protocols can be developed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Collection : Bibliothèque scientifique internationale ; 10