794 resultados para wireless connectivity
Resumo:
It is still an open question whether subjective memory complaints (SMC) can actually be considered to be clinically relevant predictors for the development of an objective memory impairment and even dementia. There is growing evidence that suggests that SMC are associated with an increased risk of dementia and with the presence of biological correlates of early Alzheimer's disease. In this paper, in order to shed some light on this issue, we try to discern whether subjects with SMC showed a different profile of functional connectivity compared with subjects with mild cognitive impairment (MCI) and healthy elderly subjects. In the present study, we compare the degree of synchronization of brain signals recorded with magnetoencephalography between three groups of subjects (56 in total): 19 with MCI, 12 with SMC and 25 healthy controls during a memory task. Synchronization likelihood, an index based on the theory of nonlinear dynamical systems, was used to measure functional connectivity. Briefly, results show that subjects with SMC have a very similar pattern of connectivity to control group, but on average, they present a lower synchronization value. These results could indicate that SMC are representing an initial stage with a hypo-synchronization (in comparison with the control group) where the brain system is still not compensating for the failing memory networks, but behaving as controls when compared with the MCI subjects.
Resumo:
Wireless sensor networks are posed as the new communication paradigm where the use of small, low-complexity, and low-power devices is preferred over costly centralized systems. The spectra of potential applications of sensor networks is very wide, ranging from monitoring, surveillance, and localization, among others. Localization is a key application in sensor networks and the use of simple, efficient, and distributed algorithms is of paramount practical importance. Combining convex optimization tools with consensus algorithms we propose a distributed localization algorithm for scenarios where received signal strength indicator readings are used. We approach the localization problem by formulating an alternative problem that uses distance estimates locally computed at each node. The formulated problem is solved by a relaxed version using semidefinite relaxation technique. Conditions under which the relaxed problem yields to the same solution as the original problem are given and a distributed consensusbased implementation of the algorithm is proposed based on an augmented Lagrangian approach and primaldual decomposition methods. Although suboptimal, the proposed approach is very suitable for its implementation in real sensor networks, i.e., it is scalable, robust against node failures and requires only local communication among neighboring nodes. Simulation results show that running an additional local search around the found solution can yield performance close to the maximum likelihood estimate.
Resumo:
As wireless sensor networks are usually deployed in unattended areas, security policies cannot be updated in a timely fashion upon identification of new attacks. This gives enough time for attackers to cause significant damage. Thus, it is of great importance to provide protection from unknown attacks. However, existing solutions are mostly concentrated on known attacks. On the other hand, mobility can make the sensor network more resilient to failures, reactive to events, and able to support disparate missions with a common set of sensors, yet the problem of security becomes more complicated. In order to address the issue of security in networks with mobile nodes, we propose a machine learning solution for anomaly detection along with the feature extraction process that tries to detect temporal and spatial inconsistencies in the sequences of sensed values and the routing paths used to forward these values to the base station. We also propose a special way to treat mobile nodes, which is the main novelty of this work. The data produced in the presence of an attacker are treated as outliers, and detected using clustering techniques. These techniques are further coupled with a reputation system, in this way isolating compromised nodes in timely fashion. The proposal exhibits good performances at detecting and confining previously unseen attacks, including the cases when mobile nodes are compromised.
Resumo:
Wireless sensor networks (WSNs) appeal to a wide range of applications that involve the monitoring of various physical phenomena. However, WSNs are subject to many threats. In particular, lack of pervasive tamper-resistant hardware results in sensors being easy targets for compromise. Having compromised a sensor, the adversary learns all the sensor secrets, allowing it to later encrypt/decrypt or authenticate messages on behalf of that sensor. This threat is particularly relevant in the novel unattended wireless sensor networks (UWSNs) scenario. UWSNs operate without constant supervision by a trusted sink. UWSN?s unattended nature and increased exposure to attacks prompts the need for special techniques geared towards regaining security after being compromised. In this article, we investigate cooperative self-healing in UWSNs and propose various techniques to allow unattended sensors to recover security after compromise. Our techniques provide seamless healing rates even against a very agile and powerful adversary. The effectiveness and viability of our proposed techniques are assessed by thorough analysis and supported by simulation results. Finally, we introduce some real-world issues affecting UWSN deployment and provide some solutions for them as well as a few open problems calling for further investigation.
Resumo:
Si una red inalámbrica de sensores se implementa en un entorno hostil, las limitaciones intrínsecas a los nodos conllevan muchos problemas de seguridad. En este artículo se aborda un ataque particular a los protocolos de localización y descubrimiento de vecinos, llevada a cabo por dos nodos que actúan en connivencia y establecen un "agujero de gusano" para tratar de engañar a un nodo aislado, haciéndole creer que se encuentra en la vecindad de un conjunto de nodos locales. Para contrarrestar este tipo de amenazas, se presenta un marco de actuación genéricamente denominado "detection of wormhole attacks using range-free methods" (DWARF) dentro del cual derivamos dos estrategias para de detección de agujeros de gusano: el primer enfoque (DWARFLoc) realiza conjuntamente la localización y la detección de ataques, mientras que el otro (DWARFTest) valida la posición estimada por el nodo una vez finalizado el protocolo de localización. Las simulaciones muestran que ambas estrategias son eficaces en la detección de ataques tipo "agujero de gusano", y sus prestaciones se comparan con las de un test convencional basado en la razón de verosimilitudes.
Resumo:
Runtime variability is a key technique for the success of Dynamic Software Product Lines (DSPLs), as certain application demand reconfiguration of system features and execution plans at runtime. In this emerging research work we address the problem of dynamic changes in feature models in sensor networks product families, where nodes of the network demand dynamic reconfiguration at post-deployment time.
Resumo:
Energy efficiency is a major design issue in the context of Wireless Sensor Networks (WSN). If data is to be sent to a far-away base station, collaborative beamforming by the sensors may help to dis- tribute the load among the nodes and reduce fast battery depletion. However, collaborative beamforming techniques are far from opti- mality and in many cases may be wasting more power than required. In this contribution we consider the issue of energy efficiency in beamforming applications. Using a convex optimization framework, we propose the design of a virtual beamformer that maximizes the network's lifetime while satisfying a pre-specified Quality of Service (QoS) requirement. A distributed consensus-based algorithm for the computation of the optimal beamformer is also provided
Resumo:
The analysis of the interdependence between time series has become an important field of research, mainly as a result of advances in the characterization of dynamical systems from the signals they produce, and the introduction of concepts such as Generalized (GS) and Phase synchronization (PS). This increase in the number of approaches to tackle the existence of the so-called functional (FC) and effective connectivity (EC) (Friston 1994) between two, (or among many) neural networks, along with their mathematical complexity, makes it desirable to arrange them into a unified toolbox, thereby allowing neuroscientists, neurophysiologists and researchers from related fields to easily access and make use of them.
Resumo:
In this work, we describe hubs organization within the olfactory network with Functional Magnetic Resonance Imaging (fMRI). Granger causality analyses were applied in the supposed regions of interest (ROIs) involved in olfactory tasks, as described in [1]. We aim to get deeper knowledge about the hierarchy of the regions within the olfactory network and to describe which of these regions, in terms of strength of the connectivity, impair in different types of anosmia.
Resumo:
Alteration of brain communication due to abnormal patterns of synchronization is nowadays one of the most suitable mechanisms for having a better understanding of brain pathologies. Very recently, it has been proved that abnormal changes in both local and long range functional interactions underlie the cognitive deficits associated with different brain disorders. Mild cognitive impairment (MCI) is a state characterized for cognitive dysfunction, such as the memory. The study of the spatial and dynamic alterations in MCI subjects' functional networks could provide important evidences of the brain mechanisms responsible for such impairment.
Resumo:
n this paper, we present the design and implementation of a prototype system of Smart Parking Services based on Wireless Sensor Networks (WSNs) that allows vehicle drivers to effectively find the free parking places. The proposed scheme consists of wireless sensor networks, embedded web-server, central web-server and mobile phone application. In the system, low-cost wireless sensors networks modules are deployed into each parking slot equipped with one sensor node. The state of the parking slot is detected by sensor node and is reported periodically to embedded web-server via the deployed wireless sensor networks. This information is sent to central web-server using Wi-Fi networks in real-time, and also the vehicle driver can find vacant parking lots using standard mobile devices.
Resumo:
In this work a complete set of libraries for developing wireless sensor applications in a simple and intuitive way is presented, in contraposition to the most spread application abstraction-level mechanisms based on operating systems. The main target of this software platform, named CookieLibs, is to provide the highest abstraction level on the management of WSNs but in the simplest way for those users who are not familiar with software design, in order to achieve a fast profiling mechanism for reliable prototyping based on the Cookies platform.
Resumo:
In this work a novel wake-up architecture for wireless sensor nodes based on ultra low power FPGA is presented. A simple wake up messaging mechanism for data gathering applications is proposed. The main goal of this work is to evaluate the utilization of low power configurable devices to take advantage of their speed, flexibility and low power consumption compared with traditional approaches, based on ASICs or microcontrollers, for frame decoding and data control. A test bed based on infrared communications has been built to validate the messaging mechanism and the processing architecture.
Resumo:
The analysis of the interdependence between time series has become an important field of research in the last years, mainly as a result of advances in the characterization of dynamical systems from the signals they produce, the introduction of concepts such as generalized and phase synchronization and the application of information theory to time series analysis. In neurophysiology, different analytical tools stemming from these concepts have added to the ‘traditional’ set of linear methods, which includes the cross-correlation and the coherency function in the time and frequency domain, respectively, or more elaborated tools such as Granger Causality. This increase in the number of approaches to tackle the existence of functional (FC) or effective connectivity (EC) between two (or among many) neural networks, along with the mathematical complexity of the corresponding time series analysis tools, makes it desirable to arrange them into a unified-easy-to-use software package. The goal is to allow neuroscientists, neurophysiologists and researchers from related fields to easily access and make use of these analysis methods from a single integrated toolbox. Here we present HERMES (http://hermes.ctb.upm.es), a toolbox for the Matlab® environment (The Mathworks, Inc), which is designed to study functional and effective brain connectivity from neurophysiological data such as multivariate EEG and/or MEG records. It includes also visualization tools and statistical methods to address the problem of multiple comparisons. We believe that this toolbox will be very helpful to all the researchers working in the emerging field of brain connectivity analysis.
Resumo:
In current communication systems, there are many new challenges like various competitive standards, the scarcity of frequency resource, etc., especially the development of personal wireless communication systems result the new system update faster than ever before, the conventional hardware-based wireless communication system is difficult to adapt to this situation. The emergence of SDR enabled the third revolution of wireless communication which from hardware to software and build a flexible, reliable, upgradable, reusable, reconfigurable and low cost platform. The Universal Software Radio Peripheral (USRP) products are commonly used with the GNU Radio software suite to create complex SDR systems. GNU Radio is a toolkit where digital signal processing blocks are written in C++, and connected to each other with Python. This makes it easy to develop more sophisticated signal processing systems, because many blocks already written by others and you can quickly put them together to create a complete system. Although the main function of GNU Radio is not be a simulator, but if there is no RF hardware components,it supports to researching the signal processing algorithm based on pre-stored and generated data by signal generator. This thesis introduced SDR platform from hardware (USRP) and software(GNU Radio), as well as some basic modulation techniques in wireless communication system. Based on the examples provided by GNU Radio, carried out some related experiments, for example GSM scanning and FM radio station receiving on USRP. And make a certain degree of improvement based on the experience of some investigators to observe OFDM spectrum and simulate real-time video transmission. GNU Radio combine with USRP hardware proved to be a valuable lab platform for implementing complex radio system prototypes in a short time. RESUMEN. Software Defined Radio (SDR) es una tecnología emergente que está creando un impacto revolucionario en la tecnología de radio convencional. Un buen ejemplo de radio software son los sistemas de código abierto llamados GNU Radio que emplean un kit de herramientas de desarrollo de software libre. En este trabajo se ha empleado un kit de desarrollo comercial (Ettus Research) que consiste en un módulo de procesado de señal y un hardaware sencillo. El módulo emplea un software de desarrollo basado en Linux sobre el que se pueden implementar aplicaciones de radio software muy variadas. El hardware de desarrollo consta de un microprocesador de propósito general, un dispositivo programable (FPGA) y un interfaz de radiofrecuencia que cubre de 50 a 2200MHz. Este hardware se conecta al PC por medio de un interfaz USB de 8Mb/s de velocidad. Sobre la plataforma de Ettus se pueden ejecutar aplicaciones GNU radio que utilizan principalmente lenguaje de programación Python para implementarse. Sin embargo, su módulo de procesado de señal está construido en C + + y emplea un microprocesador con aritmética de coma flotante. Por lo tanto, los desarrolladores pueden rápida y fácilmente construir aplicaciones en tiempo real sistemas de comunicación inalámbrica de alta capacidad. Aunque su función principal no es ser un simulador, si no puesto que hay componentes de hardware RF, Radio GNU sirve de apoyo a la investigación del algoritmo de procesado de señales basado en pre-almacenados y generados por los datos del generador de señal. En este trabajo fin de máster se ha evaluado la plataforma de hardware de DEG (USRP) y el software (GNU Radio). Para ello se han empleado algunas técnicas de modulación básicas en el sistema de comunicación inalámbrica. A partir de los ejemplos proporcionados por GNU Radio, hemos realizado algunos experimentos relacionados, por ejemplo, escaneado del espectro, demodulación de señales de FM empleando siempre el hardware de USRP. Una vez evaluadas aplicaciones sencillas se ha pasado a realizar un cierto grado de mejora y optimización de aplicaciones complejas descritas en la literatura. Se han empleado aplicaciones como la que consiste en la generación de un espectro de OFDM y la simulación y transmisión de señales de vídeo en tiempo real. Con estos resultados se está ahora en disposición de abordar la elaboración de aplicaciones complejas.