876 resultados para wavelet transform
Resumo:
Oil prospecting is one of most complex and important features of oil industry Direct prospecting methods like drilling well logs are very expensive, in consequence indirect methods are preferred. Among the indirect prospecting techniques the seismic imaging is a relevant method. Seismic method is based on artificial seismic waves that are generated, go through the geologic medium suffering diffraction and reflexion and return to the surface where they are recorded and analyzed to construct seismograms. However, the seismogram contains not only actual geologic information, but also noise, and one of the main components of the noise is the ground roll. Noise attenuation is essential for a good geologic interpretation of the seismogram. It is common to study seismograms by using time-frequency transformations that map the seismic signal into a frequency space where it is easier to remove or attenuate noise. After that, data is reconstructed in the original space in such a way that geologic structures are shown in more detail. In addition, the curvelet transform is a new and effective spectral transformation that have been used in the analysis of complex data. In this work, we employ the curvelet transform to represent geologic data using basis functions that are directional in space. This particular basis can represent more effectively two dimensional objects with contours and lines. The curvelet analysis maps real space into frequencies scales and angular sectors in such way that we can distinguish in detail the sub-spaces where is the noise and remove the coefficients corresponding to the undesired data. In this work we develop and apply the denoising analysis to remove the ground roll of seismograms. We apply this technique to a artificial seismogram and to a real one. In both cases we obtain a good noise attenuation
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Wavelet functions have been used as the activation function in feedforward neural networks. An abundance of R&D has been produced on wavelet neural network area. Some successful algorithms and applications in wavelet neural network have been developed and reported in the literature. However, most of the aforementioned reports impose many restrictions in the classical backpropagation algorithm, such as low dimensionality, tensor product of wavelets, parameters initialization, and, in general, the output is one dimensional, etc. In order to remove some of these restrictions, a family of polynomial wavelets generated from powers of sigmoid functions is presented. We described how a multidimensional wavelet neural networks based on these functions can be constructed, trained and applied in pattern recognition tasks. As an example of application for the method proposed, it is studied the exclusive-or (XOR) problem.
Resumo:
We have investigated a high-resolution Fourier transform (FT) absorption spectrum of the (CH3OH)-C-13 isotopomer of methanol from 400 to 950 cm(-1) with the Ritz program. We present the assignments of 7160 transitions, 3021 of which belong to Asymmetry, and 4139 to E-symmetry. These transitions occur between states labeled by K quantum numbers up to 14, and by torsional quantum numbers n up to 4. The Ritz program evaluated the energies of the 4684 involved levels with an accuracy of the order of 10(-4) cm(-1). All of the assigned lines correspond to transitions involving torsionally excited levels within the ground small-amplitude vibrational state. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
This work presents an analysis of the wavelet-Galerkin method for one-dimensional elastoplastic-damage problems. Time-stepping algorithm for non-linear dynamics is presented. Numerical treatment of the constitutive models is developed by the use of return-mapping algorithm. For spacial discretization we can use wavelet-Galerkin method instead of standard finite element method. This approach allows to locate singularities. The discrete formulation developed can be applied to the simulation of one-dimensional problems for elastic-plastic-damage models. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Function approximation is a very important task in environments where computation has to be based on extracting information from data samples in real world processes. Neural networks and wavenets have been recently seen as attractive tools for developing efficient solutions for many real world problems in function approximation. In this paper, it is shown how feedforward neural networks can be built using a different type of activation function referred to as the PPS-wavelet. An algorithm is presented to generate a family of PPS-wavelets that can be used to efficiently construct feedforward networks for function approximation.
Resumo:
Methods of assessment of compost maturity are needed so the application of composted materials to lands will provide optimal benefits. The aim of the present paper is to assess the maturity reached by composts from domestic solid wastes (DSW) prepared under periodic and permanent aeration systems and sampled at different composting time, by means of excitation-emission matrix (EEM) fluorescence spectroscopy and Fourier transform infrared spectroscopy (FT-IR). EEM spectra indicated the presence of two different fluorophores centered, respectively, at Ex/Em wavelength pairs of 330/425 and 280/330 nm. The fluorescence intensities of these peaks were also analyzed, showing trends related to the maturity of composts. The contour density of EEM maps appeared to be strongly reduced with composting days. After 30 and 45 days of composting, FT-IR spectra exhibited a decrease of intensity of peaks assigned to polysaccharides and in the aliphatic region. EEM and FT-IR techniques seem to produce spectra that correlate with the degree of maturity of the compost. Further refinement of these techniques should provide a relatively rapid method of assessing the suitability of the compost to land application.
A combined wavelet-element free Galerkin method for numerical calculations of electromagnetic fields
Resumo:
A combined wavelet-element free Galerkin (EFG) method is proposed for solving electromagnetic EM) field problems. The bridging scales are used to preserve the consistency and linear independence properties of the entire bases. A detailed description of the development of the discrete model and its numerical implementations is given to facilitate the reader to. understand the proposed algorithm. A numerical example to validate the proposed method is also reported.
Resumo:
In this work we present high resolution Doppler limited absorption spectra measurements of the C-O stretching mode of (CH3OH)-C-13, obtained from diode laser spectroscopy, and the Fourier Transform spectrum obtained at 0. 12 cm-1 resolution. By using these data and previously known spectroscopic information, we determined the frequency and the J quantum number for the multiplets of the P and R(J) branches of the C-O stretching fundamental band. Infrared transitions in coincidence with emission lines of the regular CO2 laser and some of its isotope parents are pointed out.
Resumo:
This paper presents a technique for oriented texture classification which is based on the Hough transform and Kohonen's neural network model. In this technique, oriented texture features are extracted from the Hough space by means of two distinct strategies. While the first operates on a non-uniformly sampled Hough space, the second concentrates on the peaks produced in the Hough space. The described technique gives good results for the classification of oriented textures, a common phenomenon in nature underlying an important class of images. Experimental results are presented to demonstrate the performance of the new technique in comparison, with an implemented technique based on Gabor filters.
Resumo:
The main purpose of this paper is to investigate theoretically and experimentally the use of family of Polynomial Powers of the Sigmoid (PPS) Function Networks applied in speech signal representation and function approximation. This paper carries out practical investigations in terms of approximation fitness (LSE), time consuming (CPU Time), computational complexity (FLOP) and representation power (Number of Activation Function) for different PPS activation functions. We expected that different activation functions can provide performance variations and further investigations will guide us towards a class of mappings associating the best activation function to solve a class of problems under certain criteria.
Resumo:
We study the presence of symmetry transformations in the Faddeev-Jackiw approach for constrained systems. Our analysis is based in the case of a particle submitted to a particular potential which depends on an arbitrary function. The method is implemented in a natural way and symmetry generators are identified. These symmetries permit us to obtain the absent elements of the sympletic matrix which complement the set of Dirac brackets of such a theory. The study developed here is applied in two different dual models. First, we discuss the case of a two-dimensional oscillator interacting with an electromagnetic potential described by a Chern-Simons term and second the Schwarz-Sen gauge theory, in order to obtain the complete set of non-null Dirac brackets and the correspondent Maxwell electromagnetic theory limit. ©1999 The American Physical Society.
Resumo:
To ensure high accuracy results from GPS relative positioning, the multipath effects have to be mitigated. Although the careful selection of antenna site and the use of especial antennas and receivers can minimize multipath, it cannot always be eliminated and frequently the residual multipath disturbance remains as the major error in GPS results. The high-frequency multipath from large delays can be attenuated by double difference (DD) denoising methods. But the low-frequency multipath from short delays is very difficult to be reduced or modeled. In this paper, it is proposed a method based on wavelet regression (WR), which can effectively detect and reduce the low-frequency multipath. The wavelet technique is firstly applied to decompose the DD residuals into the low-frequency bias and high-frequency noise components. The extracted bias components by WR are then directly applied to the DD observations to correct them from the trend. The remaining terms, largely characterized by the high-frequency measurement noise, are expected to give the best linear unbiased solutions from a least-squares (LS) adjustment. An experiment was carried out using objects placed close to the receiver antenna to cause, mainly, low-frequency multipath. The data were collected for two days to verify the multipath repeatability. The ground truth coordinates were computed with data collected in the absence of the reflector objects. The coordinates and ambiguity solution were compared with and without the multipath mitigation using WR. After mitigating the multipath, ambiguity resolution became more reliable and the coordinates were more accurate.