889 resultados para surface treatment
Minimal alterations on the enamel surface by micro-abrasion: in vitro roughness and wear assessments
Resumo:
Objective: To evaluate the in vitro changes on the enamel surface after a micro-abrasion treatment promoted by different products. Material and Methods: Fifty (50) fragments of bovine enamel (15 mm × 5 mm) were randomly assigned to five groups (n=10) according to the product utilized: G1 (control)= silicone polisher (TDV), G2= 37% phosphoric acid (3M/ESPE) + pumice stone (SS White), G3= Micropol (DMC Equipment), G4= Opalustre (Ultradent) and G5= Whiteness RM (FGM Dental Products). Roughness and wear were the responsible variables used to analyze these surfaces in four stages: baseline, 60 s and 120 s after the micro-abrasion and after polishing, using a Hommel Tester T1000 device. After the tests, a normal distribution of data was verified, with repeated ANOVA analyses (p?0.05) which were used to compare each product in different stages. One-way ANOVA and Tukey tests were applied for individual comparisons between the products in each stage (p?0.05). Results: Means and standard deviations of roughness and wear (µm) after all the promoted stages were: G1=7.26(1.81)/13.16(2.67), G2=2.02(0.62)/37.44(3.33), G3=1.81(0.91)/34.93(6.92), G4=1.92(0.29)/38.42(0.65) and G5=1.98(0.53)/33.45(2.66). At 60 seconds, all products tended to produce less surface roughness with a variable gradual decrease over time. After polishing, there were no statistically significant differences between the groups, except for G1. Independent of the product utilized, the enamel wear occurred after the micro-abrasion. Conclusions: In this in vitro study, enamel micro-abrasion presented itself as a conservative approach, regardless of the type of the paste compound utilized. These products promoted minor roughness alterations and minimal wear. The use of phosphoric acid and pumice stone showed similar results to commercial products for the micro-abrasion with regard to the surface roughness and wear.
Resumo:
The soil surface roughness increases water retention and infiltration, reduces the runoff volume and speed and influences soil losses by water erosion. Similarly to other parameters, soil roughness is affected by the tillage system and rainfall volume. Based on these assumptions, the main purpose of this study was to evaluate the effect of tillage treatments on soil surface roughness (RR) and tortuosity (T) and to investigate the relationship with soil and water losses in a series of simulated rainfall events. The field study was carried out at the experimental station of EMBRAPA Southeastern Cattle Research Center in São Carlos (Fazenda Canchim), in São Paulo State, Brazil. Experimental plots of 33 m² were treated with two tillage practices in three replications, consisting of: untilled (no-tillage) soil (NTS) and conventionally tilled (plowing plus double disking) soil (CTS). Three successive simulated rain tests were applied in 24 h intervals. The three tests consisted of a first rain of 30 mm/h, a second of 30 mm/h and a third rain of 70 mm/h. Immediately after tilling and each rain simulation test, the surface roughness was measured, using a laser profile meter. The tillage treatments induced significant changes in soil surface roughness and tortuosity, demonstrating the importance of the tillage system for the physical surface conditions, favoring water retention and infiltration in the soil. The increase in surface roughness by the tillage treatments was considerably greater than its reduction by rain action. The surface roughness and tortuosity had more influence on the soil volume lost by surface runoff than in the conventional treatment. Possibly, other variables influenced soil and water losses from the no-tillage treatments, e.g., soil type, declivity, slope length, among others not analyzed in this study.
Resumo:
OBJECTIVE: Define and compare numbers and types of occlusal contacts in maximum intercuspation. METHODS: The study consisted of clinical and photographic analysis of occlusal contacts in maximum intercuspation. Twenty-six Caucasian Brazilian subjects were selected before orthodontic treatment, 20 males and 6 females, with ages ranging between 12 and 18 years. The subjects were diagnosed and grouped as follows: 13 with Angle Class I malocclusion and 13 with Angle Class II Division 1 malocclusion. After analysis, the occlusal contacts were classified according to the established criteria as: tripodism, bipodism, monopodism (respectively, three, two or one contact point with the slope of the fossa); cuspid to a marginal ridge; cuspid to two marginal ridges; cuspid tip to opposite inclined plane; surface to surface; and edge to edge. RESULTS: The mean number of occlusal contacts per subject in Class I malocclusion was 43.38 and for Class II Division 1 malocclusion it was 44.38, this difference was not statistically significant (p>0.05). CONCLUSIONS: There is a variety of factors that influence the number of occlusal contacts between a Class I and a Class II, Division 1 malocclusion. There is no standardization of occlusal contact type according to the studied malocclusions. A proper selection of occlusal contact types such as cuspid to fossa or cuspid to marginal ridge and its location in the teeth should be individually defined according to the demands of each case. The existence of an adequate occlusal contact leads to a correct distribution of forces, promoting periodontal health.
Resumo:
Die Wechselwirkung zwischen Proteinen und anorganischen Oberflächen fasziniert sowohl aus angewandter als auch theoretischer Sicht. Sie ist ein wichtiger Aspekt in vielen Anwendungen, unter anderem in chirugischen Implantaten oder Biosensoren. Sie ist außerdem ein Beispiel für theoretische Fragestellungen betreffend die Grenzfläche zwischen harter und weicher Materie. Fest steht, dass Kenntnis der beteiligten Mechanismen erforderlich ist um die Wechselwirkung zwischen Proteinen und Oberflächen zu verstehen, vorherzusagen und zu optimieren. Aktuelle Fortschritte im experimentellen Forschungsbereich ermöglichen die Untersuchung der direkten Peptid-Metall-Bindung. Dadurch ist die Erforschung der theoretischen Grundlagen weiter ins Blickfeld aktueller Forschung gerückt. Eine Möglichkeit die Wechselwirkung zwischen Proteinen und anorganischen Oberflächen zu erforschen ist durch Computersimulationen. Obwohl Simulationen von Metalloberflächen oder Proteinen als Einzelsysteme schon länger verbreitet sind, bringt die Simulation einer Kombination beider Systeme neue Schwierigkeiten mit sich. Diese zu überwinden erfordert ein Mehrskalen-Verfahren: Während Proteine als biologische Systeme ausreichend mit klassischer Molekulardynamik beschrieben werden können, bedarf die Beschreibung delokalisierter Elektronen metallischer Systeme eine quantenmechanische Formulierung. Die wichtigste Voraussetzung eines Mehrskalen-Verfahrens ist eine Übereinstimmung der Simulationen auf den verschiedenen Skalen. In dieser Arbeit wird dies durch die Verknüpfung von Simulationen alternierender Skalen erreicht. Diese Arbeit beginnt mit der Untersuchung der Thermodynamik der Benzol-Hydratation mittels klassischer Molekulardynamik. Dann wird die Wechselwirkung zwischen Wasser und den [111]-Metalloberflächen von Gold und Nickel mittels eines Multiskalen-Verfahrens modelliert. In einem weiteren Schritt wird die Adsorbtion des Benzols an Metalloberflächen in wässriger Umgebung studiert. Abschließend wird die Modellierung erweitert und auch die Aminosäuren Alanin und Phenylalanin einbezogen. Dies eröffnet die Möglichkeit realistische Protein- Metall-Systeme in Computersimulationen zu betrachten und auf theoretischer Basis die Wechselwirkung zwischen Peptiden und Oberflächen für jede Art Peptide und Oberfläche vorauszusagen.
Resumo:
ABSTRACT Corundum is one of the most famous gems materials. Different heat treatment methods for enhancement purposes are commonly applied and accepted in the gem market. With this reason, the identification of the natural, unheated corundum is intensively investigated. In this study, aluminium hydroxide minerals and zircon are focused to observe the crystallization and phase change of these minerals during heat treatment procedures. Aluminium hydroxide minerals can be transformed to alumina with the corundum structure by heating. The reaction history of aluminium hydroxide minerals containing corundum was investigated comparing it with diaspore, boehmite, gibbsite and bayerite by TG and DTA methods. These hydroxide minerals were entirely transformed to corundum after heating at 600°C. Zircon inclusions in corundums from Ilakaka, Madagascar, were investigated for the influence of different heat-treatment temperatures on the recovery of their crystalline structure and on possible reactions within and with the host crystals. The host corundum was heated at 500, 800, 1000, 1200, 1400, 1600 and 1800°C. The crystallinity, the trapped pressure, and the decomposition of the zircon inclusions within the host corundum have been investigated by Raman spectroscopy. Radiation-damaged zircon inclusions may be used as an indicator for unheated Ilakaka corundum crystals. They are fully recrystallized after heating at 1000°C influencing the lowering of the 3 Raman band shift, the decreasing of FWHM of the 3 Raman band and the decreasing of the trapped pressure between the inclusion and the host corundum. Under microscopic observation, surface alterations of the inclusions can be firstly seen from transparent into frosted-like appearance at 1400°C. Then, between 1600°C and 1800 °C, the inclusion becomes partly or even completely molten. The decomposition of the zircon inclusion to m-ZrO2 and SiO2-glass phases begins at the rim of the inclusion after heating from 1200°C to 1600°C which can be detected by the surface change, the increase of the 3 Raman band position and the trapped pressure. At 1800°C, the zircon inclusions entirely melt transforming to solid phases during cooling like m-ZrO2 and SiO2-glass accompanied by an increase of pressure between the transformed inclusion and its host.
Resumo:
Outdoor bronzes exposed to the environment form naturally a layer called patina, which may be able to protect the metallic substrate. However, since the last century, with the appearance of acid rains, a strong change in the nature and properties of the copper based patinas occurred [1]. Studies and general observations have established that bronze corrosion patinas created by acid rain are not only disfiguring in terms of loss of detail and homogeneity, but are also unstable [2]. The unstable patina is partially leached away by rainwater. This leaching is represented by green streaking on bronze monuments [3]. Because of the instability of the patina, conservation techniques are usually required. On a bronze object exposed to the outdoor environment, there are different actions of the rainfall and other atmospheric agents as a function of the monument shape. In fact, we recognize sheltered and unsheltered areas as regards exposure to rainwater [4]. As a consequence of these different actions, two main patina types are formed on monuments exposed to the outdoor environment. These patinas have different electrochemical, morphological and compositional characteristics [1]. In the case of sheltered areas, the patina contains mainly copper products, stratified above a layer strongly enriched in insoluble Sn oxides, located at the interface with the uncorroded metal. Moreover, different colors of the patina result from the exposure geometry. The surface color may be pale green for unsheltered areas, and green and mat black for sheltered areas [4]. Thus, in real outdoor bronze monuments, the corrosion behavior is strongly influenced by the exposure geometry. This must be taken into account when designing conservation procedures, since the patina is in most cases the support on which corrosion inhibitors are applied. Presently, for protecting outdoor bronzes against atmospheric corrosion, inhibitors and protective treatments are used. BTA and its derivatives, which are the most common inhibitors used for copper and its alloy, were found to be toxic for the environment and human health [5, 6]. Moreover, it has been demonstrated that BTA is efficient when applied on bare copper but not as efficient when applied on bare bronze [7]. Thus it was necessary to find alternative compounds. Silane-based inhibitors (already successfully tested on copper and other metallic substrates [8]), were taken into consideration as a non-toxic, environmentally friendly alternative to BTA derivatives for bronze protection. The purpose of this thesis was based on the assessment of the efficiency of a selected compound, to protect the bronze against corrosion, which is the 3-mercapto-propyl-trimethoxy-silane (PropS-SH). It was selected thanks to the collaboration with the Corrosion Studies Centre “Aldo Daccò” at the Università di Ferrara. Since previous studies [9, 10, 11] demonstrated that the addition of nanoparticles to silane-based inhibitors leads to an increase of the protective efficiency, we also wanted to evaluate the influence of the addition of CeO2, La2O3, TiO2 nanoparticles on the protective efficiency of 3-mercapto-propyl-trimethoxy-silane, applied on pre-patinated bronze surfaces. This study is the first section of the thesis. Since restorers have to work on patinated bronzes and not on bare metal (except for contemporary art), it is important to be able to recreate the patina, under laboratory conditions, either in sheltered or unsheltered conditions to test the coating and to obtain reliable results. Therefore, at the University of Bologna, different devices have been designed to simulate the real outdoor conditions and to create a patina which is representative of real application conditions of inhibitor or protective treatments. In particular, accelerated ageing devices by wet & dry (simulating the action of stagnant rain in sheltered areas [12]) and by dropping (simulating the leaching action of the rain in unsheltered areas [1]) tests were used. In the present work, we used the dropping test as a method to produce pre-patinated bronze surfaces for the application of a candidate inhibitor as well as for evaluating its protective efficiency on aged bronze (unsheltered areas). In this thesis, gilded bronzes were also studied. When they are exposed to the outside environment, a corrosion phenomenon appears which is due to the electrochemical couple gold/copper where copper is the anode. In the presence of an electrolyte, this phenomenon results in the formation of corrosion products than will cause a blistering of the gold (or a break-up and loss of the film in some cases). Moreover, because of the diffusion of the copper salts to the surface, aggregates and a greenish film will be formed on the surface of the sample [13]. By coating gilded samples with PropS-SH and PropS-SH containing nano-particles and carrying out accelerated ageing by the dropping test, a discussion is possible on the effectiveness of this coating, either with nano-particles or not, against the corrosion process. This part is the section 2 of this thesis. Finally, a discussion about laser treatment aiming at the assessment of reversibility/re-applicability of the PropS-SH coating can be found in section 3 of this thesis. Because the protective layer loses its efficiency with time, it is necessary to find a way of removing the silane layer, before applying a new one on the “bare” patina. One request is to minimize the damages that a laser treatment would create on the patina. Therefore, different laser fluences (energy/surface) were applied on the sample surface during the treatment process in order to find the best range of fluence. In particular, we made a characterization of surfaces before and after removal of PropS-SH (applied on a naturally patinated surface, and subsequently aged by natural exposure) with laser methods. The laser removal treatment was done by the CNR Institute of Applied Physics “Nello Carrara” of Sesto Fiorentino in Florence. In all the three sections of the thesis, a range of non-destructive spectroscopic methods (Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM-EDS), μ-Raman spectroscopy, X-Ray diffractometry (XRD)) were used for characterizing the corroded surfaces. AAS (Atomic Absorption Spectroscopy) was used to analyze the ageing solutions from the dropping test in sections 1 and 2.
Resumo:
Articular cartilage lesions, with their inherent limited healing potential, are hard to treat and remain a challenging problem for orthopedic surgeons. Despite the development of several treatment strategies, the real potential of each procedure in terms of clinical benefit and effects on the joint degeneration processes is not clear. Aim of this PhD project was to evaluate the results, both in terms of clinical and imaging improvement, of new promising procedures developed to address the challenging cartilage pathology. Several studies have been followed in parallel and completed over the 3-year PhD, and are reported in detail in the following pages. In particular, the studies have been focused on the evaluation of the treatment indications of a scaffold based autologous chondrocyte implantation procedure, documenting its results for the classic indication of focal traumatic lesions, as well as its use for the treatment of more challenging patients, older, with degenerative lesions, or even as salvage procedure for more advanced stages of articular degeneration. The second field of study involved the analysis of the results obtained treating lesions of the articular surface with a new biomimetic osteochondral scaffold, which showed promise for the treatment of defects where the entire osteochondral unit is involved. Finally, a new minimally invasive procedure based on the use of growth factors derived from autologous platelets has been explored, showing results and underlining indicatios for the treatment of cartilage lesions and different stages of joint degeneration. These studies shed some light on the potential of the evaluated procedures, underlining good results as well as limits, they give some indications on the most appropriate candidates for their application, and document the current knowledge on cartilage treatment procedures suggesting the limitations that need to be addressed by future studies to improve the management of cartilage lesions.
Resumo:
Recently, the surface plasmon field-enhanced fluorescence spectroscopy (SPFS) was developed as a kinetic analysis and a detection method with dual- monitoring of the change of reflectivity and fluorescence signal for the interfacial phenomenon. A fundamental study of PNA and DNA interaction at the surface using surface plasmon fluorescence spectroscopy (SPFS) will be investigated in studies. Furthermore, several specific conditions to influence on PNA/DNA hybridization and affinity efficiency by monitoring reflective index changes and fluorescence variation at the same time will be considered. In order to identify the affinity degree of PNA/DNA hybridizaiton at the surface, the association constant (kon) and the dissociation constant (koff) will be obtained by titration experiment of various concentration of target DNA and kinetic investigation. In addition, for more enhancing the hybridization efficiency of PNA/DNA, a study of polarized electric field enhancement system will be introduced and performed in detail. DNA is well-known polyelectrolytes with naturally negative charged molecules in its structure. With polarized electrical treatment, applying DC field to the metal surface, which PNA probe would be immobilized at, negatively charged DNA molecules can be attracted by electromagnetic attraction force and manipulated to the close the surface area, and have more possibility to hybridize with probe PNA molecules by hydrogen bonding each corresponding base sequence. There are several major factors can be influenced on the hybridization efficiency.
Resumo:
In the last decades noble metal nanoparticles (NPs) arose as one of the most powerful tools for applications in nanomedicine field and cancer treatment. Glioblastoma multiforme (GBM), in particular, is one of the most aggressive malignant brain tumors that nowadays still presents a dramatic scenario concerning median survival. Gold nanorods (GNRs) and silver nanoparticles (AgNPs) could find applications such as diagnostic imaging, hyperthermia and glioblastoma therapy. During these three years, both GNRs and AgNPs were synthesized with the “salt reduction” method and, through a novel double phase transfer process, using specifically designed thiol-based ligands, lipophilic GNRs and AgNPs were obtained and separately entrapped into biocompatible and biodegradable PEG-based polymeric nanoparticles (PNPs) suitable for drug delivery within the body. Moreover, a synergistic effect of AgNPs with the Alisertib drug, were investigated thanks to the simultaneous entrapment of these two moieties into PNPs. In addition, Chlorotoxin (Cltx), a peptide that specifically recognize brain cancer cells, was conjugated onto the external surface of PNPs. The so-obtained novel nanosystems were evaluated for in vitro and in vivo applications against glioblastoma multiforme. In particular, for GNRs-PNPs, their safety, their suitability as optoacoustic contrast agents, their selective laser-induced cells death and finally, a high tumor retention were all demonstrated. Concerning AgNPs-PNPs, promising tumor toxicity and a strong synergistic effect with Alisertib was observed (IC50 10 nM), as well as good in vivo biodistribution, high tumor uptake and significative tumor reduction in tumor bearing mice. Finally, the two nanostructures were linked together, through an organic framework, exploiting the click chemistry azido-alkyne Huisgen cycloaddition, between two ligands previously attached to the NPs surface; this multifunctional complex nanosystem was successfully entrapped into PNPs with nanoparticles’ properties maintenance, obtaining in this way a powerful and promising tool for cancer fight and defeat.
Resumo:
Laser Shock Peening (LSP) is a surface enhancement treatment which induces a significant layer of beneficial compressive residual stresses of up to several mm underneath the surface of metal components in order to improve the detrimental effects of the crack growth behavior rate in it. The aim of this thesis is to predict the crack growth behavior in metallic specimens with one or more stripes which define the compressive residual stress area induced by the Laser Shock Peening treatment. The process was applied as crack retardation stripes perpendicular to the crack propagation direction with the object of slowing down the crack when approaching the peened stripes. The finite element method has been applied to simulate the redistribution of stresses in a cracked model when it is subjected to a tension load and to a compressive residual stress field, and to evaluate the Stress Intensity Factor (SIF) in this condition. Finally, the Afgrow software is used to predict the crack growth behavior of the component following the Laser Shock Peening treatment and to detect the improvement in the fatigue life comparing it to the baseline specimen. An educational internship at the “Research & Technologies Germany – Hamburg” department of AIRBUS helped to achieve knowledge and experience to write this thesis. The main tasks of the thesis are the following: •To up to date Literature Survey related to “Laser Shock Peening in Metallic Structures” •To validate the FE model developed against experimental measurements at coupon level •To develop design of crack growth slowdown in Centered Cracked Tension specimens based on residual stress engineering approach using laser peened strip transversal to the crack path •To evaluate the Stress Intensity Factor values for Centered Cracked Tension specimens after the Laser Shock Peening treatment via Finite Element Analysis •To predict the crack growth behavior in Centered Cracked Tension specimens using as input the SIF values evaluated with the FE simulations •To validate the results by means of experimental tests
Modelling, diagnostics and experimental analysis of plasma assisted processes for material treatment
Resumo:
This work presents results from experimental investigations of several different atmospheric pressure plasmas applications, such as Metal Inert Gas (MIG) welding and Plasma Arc Cutting (PAC) and Welding (PAW) sources, as well as Inductively Coupled Plasma (ICP) torches. The main diagnostic tool that has been used is High Speed Imaging (HSI), often assisted by Schlieren imaging to analyse non-visible phenomena. Furthermore, starting from thermo-fluid-dynamic models developed by the University of Bologna group, such plasma processes have been studied also with new advanced models, focusing for instance on the interaction between a melting metal wire and a plasma, or considering non-equilibrium phenomena for diagnostics of plasma arcs. Additionally, the experimental diagnostic tools that have been developed for industrial thermal plasmas have been used also for the characterization of innovative low temperature atmospheric pressure non equilibrium plasmas, such as dielectric barrier discharges (DBD) and Plasma Jets. These sources are controlled by few kV voltage pulses with pulse rise time of few nanoseconds to avoid the formation of a plasma arc, with interesting applications in surface functionalization of thermosensitive materials. In order to investigate also bio-medical applications of thermal plasma, a self-developed quenching device has been connected to an ICP torch. Such device has allowed inactivation of several kinds of bacteria spread on petri dishes, by keeping the substrate temperature lower than 40 degrees, which is a strict requirement in order to allow the treatment of living tissues.
Resumo:
Resistance of cancer cells towards chemotherapy is the major cause of therapy failure. Hence, the evaluation of cellular defense mechanisms is essential in the establishment of new chemotherapeutics. In this study, classical intrinsic and acquired as well as new resistance mechanisms relevant in the cellular response to the novel vacuolar H+-ATPase inhibitor archazolid B were investigated. Archazolid B, originally produced by the myxobacterium Archangium gephyra, displayed cytotoxicity in the low nanomolar range on a panel of cancer cell lines. The drug showed enhanced cytotoxic activity against nearly all cancerous cells compared to their non-cancerous pendants. With regards to ABC transporters, archazolid B was identified as a moderate substrate of ABCB1 (P-glycoprotein) and a weak substrate of ABCG2 (BCRP), whereas hypersensitivity was observed in ABCB5-expressing cells. The cytotoxic effect of archazolid B was shown to be independent of the cellular p53 status. However, cells expressing constitutively active EGFR displayed significantly increased resistance. Acquired drug resistance was studied by establishing an archazolid B-resistant MCF-7 cell line. Experiments showed that this secondary resistance was not conferred by aberrant expression or DNA mutations of the gene encoding vacuolar H+-ATPase subunit c, the direct target of archazolid B. Instead, a slight increase of ABCB1 and a significant overexpression of EGFR as well as reduced proliferation may contribute to acquired archazolid B resistance. For identification of new resistance strategies upon archazolid B treatment, omics data from bladder cancer and glioblastoma cells were analyzed, revealing drastic disturbances in cholesterol homeostasis, affecting cholesterol biosynthesis, uptake and transport. As shown by filipin staining, archazolid B led to accumulation of free cholesterol in lysosomes, which triggered sterol responses, mediated by SREBP-2 and LXR, including up-regulation of HMGCR, the key enzyme of cholesterol biosynthesis. Furthermore, inhibition of LDL uptake as well as impaired LDLR surface expression were observed, indicating newly synthesized cholesterol to be the main source of cholesterol in archazolid B-treated cells. This was proven by the fact that under archazolid B treatment, total free cholesterol levels as well as cell survival were significantly reduced by inhibiting HMGCR with fluvastatin. The combination of archazolid B with statins may therefore be an attractive strategy to circumvent cholesterol-mediated cell survival and in turn potentiate the promising anticancer effects of archazolid B.
Resumo:
Patients with moderate to severe psoriasis are undertreated. To solve this persistent problem, the consensus programme was performed to define goals for treatment of plaque psoriasis with systemic therapy and to improve patient care. An expert consensus meeting and a collaborative Delphi procedure were carried out. Nineteen dermatologists from different European countries met for a face-to-face discussion and defined items through a four-round Delphi process. Severity of plaque psoriasis was graded into mild and moderate to severe disease. Mild disease was defined as body surface area (BSA) ≤10 and psoriasis area and severity index (PASI) ≤10 and dermatology life quality index (DLQI) ≤10 and moderate to severe psoriasis as (BSA > 10 or PASI > 10) and DLQI > 10. Special clinical situations may change mild psoriasis to moderate to severe including involvement of visible areas or severe nail involvement. For systemic therapy of plaque psoriasis two treatment phases were defined: (1) induction phase as the treatment period until week 16; however, depending on the type of drug and dose regimen used, this phase may be extended until week 24 and (2) maintenance phase for all drugs was defined as the treatment period after the induction phase. For the definition of treatment goals in plaque psoriasis, the change of PASI from baseline until the time of evaluation (ΔPASI) and the absolute DLQI were used. After induction and during maintenance therapy, treatment can be continued if reduction in PASI is ≥75%. The treatment regimen should be modified if improvement of PASI is <50%. In a situation where the therapeutic response improved ≥50% but <75%, as assessed by PASI, therapy should be modified if the DLQI is >5 but can be continued if the DLQI is ≤5. This programme defines the severity of plaque psoriasis for the first time using a formal consensus of 19 European experts. In addition, treatment goals for moderate to severe disease were established. Implementation of treatment goals in the daily management of psoriasis will improve patient care and mitigate the problem of undertreatment. It is planned to evaluate the implementation of these treatment goals in a subsequent programme involving patients and physicians.
Resumo:
Somatostatin analogues, which are used to treat neuroendocrine tumors, target the high levels of somatostatin receptor subtype 2 (SSTR1; alias sst2) expressed in these cancers. However, some tumors are resistant to somatostatin analogues, and it is unknown whether the defect lies in sst2 activation or downstream signaling events. Because sst2 phosphorylation occurs rapidly after receptor activation, we examined whether sst2 is phosphorylated in neuroendocrine tumors. The sst2 receptor phosphorylation was evaluated by IHC and Western blot analysis with the new Ra-1124 antibody specific for the sst2 receptor phosphorylated at Ser341/343 in receptor-positive neuroendocrine tumors obtained from 10 octreotide-treated and 7 octreotide-naïve patients. The specificity, time course, and subcellular localization of sst2 receptor phosphorylation were examined in human embryo kinase-sst2 cell cultures by immunofluorescence and confocal microscopy. All seven octreotide-naïve tumors displayed exclusively nonphosphorylated cell surface sst2 expression. In contrast, 9 of the 10 octreotide-treated tumors contained phosphorylated sst2 that was predominantly internalized. Western blot analysis confirmed the IHC data. Octreotide treatment of human embryo kinase-sst2 cells in culture demonstrated that phosphorylated sst2 was localized at the plasma membrane after 10 seconds of stimulation and was subsequently internalized into endocytic vesicles. These data show, for the first time to our knowledge, that phosphorylated sst2 is present in most gastrointestinal neuroendocrine tumors from patients treated with octreotide but that a striking variability exists in the subcellular distribution of phosphorylated receptors among such tumors.
Resumo:
OBJECTIVES: The objective of the study was to evaluate the efficacy of an additional usage of a diamond-coated curette on surface roughness, adhesion of periodontal ligament (PDL) fibroblasts, and of Streptococcus gordonii in vitro. MATERIALS AND METHODS: Test specimens were prepared from extracted teeth and exposed to instrumentation with conventional Gracey curettes with or without additional use of diamond-coated curettes. Surface roughness (Ra and Rz) was measured before and following treatment. In addition, the adhesion of PDL fibroblasts for 72 h and adhesion of S. gordonii ATCC 10558 for 2 h have been determined. RESULTS: Instrumentation with conventional Gracey curettes reduced surface roughness (median Ra before: 0.36 μm/after: 0.25 μm; p < 0.001; median Rz before: 2.34 μm/after: 1.61 μm; p < 0.001). The subsequent instrumentation with the diamond-coated curettes resulted in a median Ra of 0.31 μm/Rz of 2.06 μm (no significance in comparison to controls). The number of attached PDL fibroblasts did not change following scaling with Gracey curettes. The additional instrumentation with the diamond-coated curettes resulted in a two-fold increase in the number of attached PDL fibroblasts but not in the numbers of adhered bacteria. CONCLUSIONS: Treatment of root surfaces with conventional Gracey curettes followed by subsequent polishing with diamond-coated curettes may result in a root surface which provides favorable conditions for the attachment of PDL fibroblasts without enhancing microbial adhesion. CLINICAL RELEVANCE: The improved attachment of PDL fibroblasts and the limited microbial adhesion on root surfaces treated with scaling with conventional Gracey curettes followed by subsequent polishing with diamond-coated curettes may favor periodontal wound healing.