946 resultados para rotating grazing
Resumo:
Abstract. In this paper we study the relative equilibria and their stability for a system of three point particles moving under the action of a Lennard{Jones potential. A central con guration is a special position of the particles where the position and acceleration vectors of each particle are proportional, and the constant of proportionality is the same for all particles. Since the Lennard{Jones potential depends only on the mutual distances among the particles, it is invariant under rotations. In a rotating frame the orbits coming from central con gurations become equilibrium points, the relative equilibria. Due to the form of the potential, the relative equilibria depend on the size of the system, that is, depend strongly of the momentum of inertia I. In this work we characterize the relative equilibria, we nd the bifurcation values of I for which the number of relative equilibria is changing, we also analyze the stability of the relative equilibria.
Resumo:
Purpose: C57/Bl6, Cpfl1-/- (Cone photoreceptors function loss 1; pure rod function), Gnat1alpha-/- (rod alpha-transducin; pure cone function) and Rpe65-/-;Rho-/- double knock-out mice were studied in order to distinguish the respective contributions of the different photoreceptor (PR) systems that enable light perception and mediate a visual reflex in adult Rpe65-/- mice using a simple behavioural procedure. Methods: Visual function was estimated using a rotating automatized optomotor drum covered with vertical black and white stripes at spatial frequencies of 0.025 to 0.5 cycles per degree (cpd) in both photopic and scotopic conditions. To evaluate the contribution as well as the light intensity threshold of each PR system, we tested the mouse strains with different luminances. Results: Stripe rotation elicits head movements in wild-type (WT) animals in photopic and scotopic conditions depending on the spatial frequency, whereas Cpfl1-/- mice show a reduced activity in the photopic condition and Gnat1alpha-/- mice an almost absent response in the scotopic condition. Interestingly, a robust visual response is obtained with Rpe65-/- knockout mice at 0.075 cpd and 0.1 cpd in the photopic condition. The residual rod function in the Rpe65-/- animals was demonstrated by testing Rpe65-/-;Rho-/- mice that present no response in photopic conditions. Conclusions: The optomotor test is a simple method to estimate the visual function, and to evaluate the respective contributions of rod and cone systems. Using this test, we demonstrate that in Rpe65-/- mice, devoid of functional cones and of detectable 11-cis-retinal protein, rods mimic in part the cone function by mediating vision in photopic conditions.
Resumo:
We report a phenomenon occurring in field-responsive suspensions: shear-induced anomalous stresses. Competition between a rotating field and a shear flow originates a multiplicity of anomalous stress behaviors in suspensions of bound dimers constituted by induced dipoles. The great variety of stress regimes includes nonmonotonic behaviors, multiresonances, negative viscosity effect, and blockades. The reversibility of the transitions between the different regimes and the self-similarity of the stresses make this phenomenon controllable and therefore applicable to modify macroscopic properties of soft condensed matter phases.
Resumo:
The objective of this work was to investigate the relationship between changes in the plant community and changes in soil physical properties and water availability, during a succession from alfalfa (Medicago sativa L.) to natural vegetation on the Loess Plateau, China. Data from a succession sere spanning 32 years were collated, and vegetative indexes were compared to changes related to soil bulk density and soil water storage. The alfalfa yield increased for approximately 7 years, then it declined and the alfalfa was replaced by a natural community dominated by Stipa bungeana that began to thrive about 10 years after alfalfa seeding. Soil bulk density increased over time, but the deterioration of the alfalfa was mainly ascribed to a severe reduction in soil water storage, which was lowest around the time when degradation commenced. The results indicated that water consumption by alfalfa could be reduced by reducing plant density. The analysis of the data also suggested that soil water recharge could be facilitated by rotating the alfalfa with other crops, natural vegetation, or bare soil.
Resumo:
Twelve-Mile Lake is an 800-acre man-made lake in central Union County. The watershed has 13,964 land acres that are used by farmers for row crops and pasture. This lake is used as a water supply source for the City of Creston and the Southern Iowa Rural Water Association. In total approximately 40,000 people are affected by this project. Developed over 20 years ago, the lake and fishery was renovated and restocked and much of the shoreline was riprapped about six years ago. During its history, extensive watershed efforts have been ongoing. However, as farmland for cropland has become more valuable and demand has increased, hilly land once used for dairy farming, grazing, and CRP has been put into row crop production. Consequently, sediment loss has become an increasing issue for farmers, conservation professionals, and the Creston Waterworks Department, which owns the water treatment facility at the lake. In 2011, the Creston Water Board received a WIRB grant to implement a sedimentation structure at the north end of the main channel flowing into the lake. The WIRB funds were used for land acquisition, with the IDNR actually constructing the facility. This report depicts work performed as part of the WIRB project.
Resumo:
Miller Creek is on the 2006 Section 303d Impaired Waters List and has a 19,926 acre watershed. All indicators, as reported in the Miller Creek assessment, show that the impairment is due to sediment and nutrient delivery from upland runoff which contributes to elevated water temperatures, excessive algae, and low dissolved oxygen levels within the stream. In an effort to control these problems, the Miller Creek Water Quality Project will target areas of 5 tons per acre or greater soil loss or with 0.5 tons per acre or greater sediment delivery rates. The assessment revealed these targeted priority lands make up 32% or 6,395 acres of the Miller Creek watershed. Priority lands include cropland, pasture land, timber, and sensitive riparian areas. It is the goal of this project to reduce sediment delivery by 70% on 60% or 3,837 acres of these priority lands. This will be accomplished through installation of strategically placed structural practices, rotational grazing systems, and buffer strips. These practices will reduce soil loss, reduce sediment delivery, improve water quality, and improve wildlife habitat in the watershed. Utilizing partnerships with NRCS and IDALS-DSC will be important in making this project successful. In addition to using matching funds from EQIP, WHIP, and CRP, the Monroe SWCD is committed to prioritizing local cost share funds through IFIP and REAP for use in the Miller Creek Watershed.
Resumo:
Miller Creek, a 19,926 acre watershed, is listed on the 2008 Section 303d Impaired Waters List. All indicators, as reported in the Miller Creek assessment, show that the impairment is due to nutrient and sediment delivery from upland runoff which contributes to elevated water temperatures, excessive algae, and low dissolved oxygen levels within the stream. The WIRB board provided implementation grant funds in 2010 for a three year project to treat targeted areas of 5 tons per acre or greater soil loss with an estimated reduction of 2,547 tons. As of December 1, 2012, with 95% of the funds allocated, the final results are estimated to provide a sediment delivery reduction of 4,500 tons and an estimated phosphorus reduction of 5,700 lbs per year. These accomplishments and the completion of the three year Miller Creek WIRB project represent "Phase I" of the SWCD's goals to treat the Miller Creek watershed. This application represents "Phase II" or the final phase of the Miller Creek water quality project. The Monroe SWCD plans to reduce sediment delivery by 70% on an additional 245 acres of priority land. This goal will be accomplished through installation of strategically placed structural practices, BMPs, and grazing systems. These practices will reduce soil loss, nutrient runoff, and sediment delivery as well as improve water quality and wildlife habitat in the watershed. Utilization of partnerships with NRCS and IDALS-DSC will continue to be an important part to the success of the project. Project goals will be achieved by utilizing matching funds from EQIP, and the Monroe SWCD has approved the use of District IFIP cost share funds specifically for use in the Miller Creek Watershed.
Resumo:
In-lake management can be a critical need for water quality improvement for impaired recreation lakes. Biomanipulation practices to achieve the proper balance of predatory fish, zooplankton grazing of algae, and native aquatic vegetation can sometimes restore water clarity of turbid, nutrient enriched lakes. Lakewood leaders have a renovation plan for Lake Colchester, involving several common and three innovative practices. Lakewood is prepared to pay for proven practices, but seeks WIRB grant support to test innovations in collaboration with Iowa DNR biologists, and ISU limnologists, serving as advisors and monitors for the entire project.
Resumo:
The objective of this work was to evaluate the effect on forage yield of sowing winter forage species before and after soybean harvest, at different nitrogen application levels. The experiment was set out in a randomized block design with a strip-split plot arrangement, and three replicates. Sowing methods (18 days before soybean harvest and six days after soybean harvest) were allocated in the main plots, and the combination among forage species (Avena strigosa cv. IAPAR 61 + Lolium multiflorum; A. strigosa cv. Comum + L. multiflorum; A. strigosa cv. Comum + L. multiflorum + Vicia villosa; A. strigosa cv. Comum + L. multiflorum + Raphanus sativus; and L. multiflorum) and nitrogen levels (0, 140, 280 and 420 kg ha-1) in the plots and subplots, respectively. Forage sowing before the soybean harvest made it possible to anticipate first grazing by 14 days, with satisfactory establishment of forage species without affecting forage production. This method permitted a longer grazing period, preventing the need for soil disking, besides allowing the use of no-tillage system. The mixture of forage species enables higher forage yield for pasture in relation to single species pastures, with response to nitrogen fertilization up to 360 kg ha-1.
Resumo:
Purpose: To assess the feasibility of a method based on microwave spectrometry to detect structural distortions of metallic stents in open air conditions and envisage the prospects of this approach toward possible medical applicability for the evaluation of implanted stents. Methods: Microwave absorbance spectra between 2.0 and 18.0 GHz were acquired in open air for the characterization of a set of commercial stents using a specifically design setup. Rotating each sample over 360º, 2D absorbance diagrams were generated as a function of frequency and rotation angle. To check our approach for detecting changes in stent length (fracture) and diameter (recoil), two specific tests were performed in open air. Finally, with a few adjustments, this same system provides 2D absorbance diagrams of stents immersed in a water-based phantom, this time over a bandwidth ranging from 0.2 to 1.8 GHz. Results: The authors show that metallic stents exhibit characteristic resonant frequencies in their microwave absorbance spectra in open air which depend on their length and, as a result, may reflect the occurrence of structural distortions. These resonances can be understood considering that such devices behave like dipole antennas in terms of microwave scattering. From fracture tests, the authors infer that microwave spectrometry provides signs of presence of Type I to Type IV stent fractures and allows in particular a quantitative evaluation of Type III and Type IV fractures. Recoil tests show that microwave spectrometry seems able to provide some quantitative assessment of diametrical shrinkage, but only if it involves longitudinal shortening. Finally, the authors observe that the resonant frequencies of stents placed inside the phantom shift down with respect to the corresponding open air frequencies, as it should be expected considering the increase of dielectric permittivity from air to water. Conclusions: The evaluation of stent resonant frequencies provided by microwave spectrometry allows detection and some quantitative assessment of stent fracture and recoil in open air conditions. Resonances of stents immersed in water can be also detected and their characteristic frequencies are in good agreement with theoretical estimates. Although these are promising results, further verifica tion in a more relevant phantom is required in order to foresee the real potential of this approach.
Resumo:
The production of transparent exopolymer particles (TEP) in response to several environmental variables was studied in 2 mesocosm experiments. The first (Expt 1) examined a gradient of 4 nutrient levels; the second (Expt 2) examined different conditions of silicate availability and zooplankton presence. Tanks were separated in 2 series, one subjected to turbulence and the other not influenced by turbulence. In tanks with nutrient addition, TEP were rapidly formed, with net apparent production rates closely linked to chl a growth rates, suggesting that phytoplankton cells were actively exuding TEP precursors. High nutrient availability increased the absolute concentration of TEP; however, the relative quantity of TEP produced was found to be lower, as TEP concentration per unit of phytoplankton biomass was inversely related to the initial nitrate dose. In Expt 1, an increase in TEP volume (3 to 48 µm equivalent spherical diameter) with nutrient dose was observed; in Expt 2, both silicate addition and turbulence enhanced TEP production and favored aggregation to larger TEP (>48 µm). The presence of zooplankton lowered TEP concentration and changed the size distribution of TEP, presumably by grazing on TEP or phytoplankton. For lower nutrient concentrations, the ratio of particulate organic carbon (POC) to particulate organic nitrogen (PON) followed the Redfield ratio. At higher nutrient conditions, when nutrients were exhausted during the post-bloom, a decoupling of carbon and nitrogen dynamics occurred and was correlated to TEP formation, with a large flow of carbon channeled toward the TEP pool in turbulent tanks. TEP accounted for an increase in POC concentration of 50% in high-nutrient and turbulent conditions. The study of TEP dynamics is crucial to understanding the biogeochemical response of the aquatic system to forcing variables such as nutrient availability and turbulence intensity.
Resumo:
The objective of this work was to evaluate the effect of winter land use on the amount of residual straw, the physical soil properties and grain yields of maize, common bean and soybean summer crops cultivated in succession. The experiment was carried out in the North Plateau of Santa Catarina state, Brazil, from May 2006 to April 2010. Five strategies of land use in winter were evaluated: intercropping with black oat + ryegrass + vetch, without grazing and nitrogen (N) fertilization (intercropping cover); the same intercropping, with grazing and 100 kg ha-1 of N per year topdressing (pasture with N); the same intercropping, with grazing and without nitrogen fertilization (pasture without N); oilseed radish, without grazing and nitrogen fertilization (oilseed radish); and natural vegetation, without grazing and nitrogen fertilization (fallow). Intercropping cover produces a greater amount of biomass in the system and, consequently, a greater accumulation of total and particulate organic carbon on the surface soil layer. However, land use in winter does not significantly affect soil physical properties related to soil compaction, nor the grain yield of maize, soybean and common bean cultivated in succession.
Resumo:
The objective of this work was to evaluate the distribution pattern and composition of soil organic matter (SOM) and its physical pools of Leptosols periodically affected by fire over the last 100 years in South Brazil. Soil samples at 0-5, 5-10, and 10-15 cm depths were collected from the following environments: native pasture without burning in the last year and grazed with 0.5 livestock per hectare per year (1NB); native pasture without burning in the last 23 years and grazed with 2.0 livestock per hectare per year (23NB); and an Araucaria forest (AF). Physical fractionation was performed with the 0-5 and 5-10 cm soil layers. Soil C and N stocks were determined in the three depths and in the physical pools, and organic matter was characterized by infrared spectroscopy and thermogravimetry. The largest C stocks in all depths and physical pools were found under the AF. The 23NB environment showed the lowest soil C and N stocks at the 5-15 cm depth, which was related to the end of burning and to the higher grazing intensity. The SOM of the occluded light fraction showed a greater chemical recalcitrance in 1NB than in 23NB. Annual pasture burning does not affect soil C stocks up to 15 cm of depth.
Resumo:
The objective of this work was to assess the effects of the sward structure of Italian ryegrass (Lolium multiflorum), during the first grazing cycle, on its morphological and bromatological characteristics throughout the growing season, and on the performance of dairy cows. The treatments consisted of two structures obtained as a function of canopy-light interception: high-light interception (HLI) and low-light interception (LLI), with different pre-grazing heights in the first grazing cycle. Pasture was managed under rotational grazing with a herbage allowance not below 30 kg dry matter (DM) per cow per day. Three grazing cycles, with a grazing interval of 30 days, were evaluated. Pre-grazing herbage mass was greater (2,240 vs. 1,656 kg ha-1 DM), but the proportion of leaf blades was smaller (0.35 vs. 0.43) for HLI swards. Neutral detergent fiber (NDF) content and organic matter digestibility (OMD) were similar between treatments in the first grazing cycle, but in the second and third ones NDF was greater, and OMD lower, for the HLI swards. Milk yields were greater for cows grazing LLI swards (19.4 vs. 21.1 kg per day). Initial grazing with 90% of light interception promotes greater nutritional value in the subsequent cycles.
Resumo:
The objective of this work was to evaluate the dry matter production of elephant grass (Pennisetum purpureum) genotypes, managed under intermittent stocking. A completely randomized design was used, with two genotypes and three replicates. The treatments consisted of factorial combinations (2x2x2) of genotypes ('BRS Kurumi' and the clone CNPGL 00‑1‑3), two light interception levels (LI) at the onset of grazing (90 and 95%), and two post‑grazing canopy heights (30 and 50 cm). A total of 24 Holstein x Zebu crossbred heifers were used. The stocking density varied in order to finish the grazing periods in two days. The interval between the defoliation, based on 95% LI, resulted in a higher leaf mass per grazing cycle. The post‑grazing height of 30 cm did not affect the number of grazing cycles but provided a greater herbage accumulation rate. The cultivar BRS Kurumi has higher pasture growth, lower rest period, and greater number of grazing cycles, which results in increased forage production in the growing season.