983 resultados para plane-parallel plate
Resumo:
An experimental investigation was conducted to study the holdup distribution of oil and water two-phase flow in two parallel tubes with unequal tube diameter. Tests were performed using white oil (of viscosity 52 mPa s and density 860 kg/m(3)) and tap water as liquid phases at room temperature and atmospheric outlet pressure. Measurements were taken of water flow rates from 0.5 to 12.5 m(3)/h and input oil volume fractions from 3 to 94 %. Results showed that there were different flow pattern maps between the run and bypass tubes when oil-water two-phase flow is found in the parallel tubes. At low input fluid flow rates, a large deviation could be found on the average oil holdup between the bypass and the run tubes. However, with increased input oil fraction at constant water flow rate, the holdup at the bypass tube became close to that at the run tube. Furthermore, experimental data showed that there was no significant variation in flow pattern and holdup between the run and main tubes. In order to calculate the holdup in the form of segregated flow, the drift flux model has been used here.
Resumo:
A generalized plane strain JKR model is established for non-slipping adhesive contact between an elastic transversely isotropic cylinder and a dissimilar elastic transversely isotropic half plane, in which a pulling force acts on the cylinder with the pulling direction at an angle inclined to the contact interface. Full-coupled solutions are obtained through the Griffith energy balance between elastic and surface energies. The analysis shows that, for a special case, i.e., the direction of pulling normal to the contact interface, the full-coupled solution can be approximated by a non-oscillatory one, in which the critical pull-off force, pull-off contact half-width and adhesion strength can be expressed explicitly. For the other cases, i.e., the direction of pulling inclined to the contact interface, tangential tractions have significant effects on the pull-off process, it should be described by an exact full-coupled solution. The elastic anisotropy leads to an orientation-dependent pull-off force and adhesion strength. This study could not only supply an exact solution to the generalized JKR model of transversely isotropic materials, but also suggest a reversible adhesion sensor designed by transversely isotropic materials, such as PZT or fiber-reinforced materials with parallel fibers. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The plane strain asymptotic fields for cracks terminating at the interface between elastic and pressure-sensitive dilatant material are investigated in this paper. Applying the stress-strain relation for the pressure-sensitive dilatant material, we have obtained an exact asymptotic solution for the plane strain tip fields for two types of cracks, one of which lies in the pressure-sensitive dilatant material and the other in the elastic material and their tips touch both the bimaterial interface. In cases, numerical results show that the singularity and the angular variations of the fields obtained depend on the material hardening exponent n, the pressure sensitivity parameter mu and geometrical parameter lambda.
Resumo:
Based on a constitutive law which includes the shear components of transformation plasticity, the asymptotic solutions to near-tip fields of plane-strain mode I steadity propagating cracks in transformed ceramics are obtained for the case of linear isotropic hardening. The stress singularity, the distributions of stresses and velocities at the crack tip are determined for various material parameters. The factors influencing the near-tip fields are discussed in detail.
Resumo:
For an anti-plane problem, the differential operator is self-adjoint and the corresponding eigenfunctions belong to the Hilbert space. The orthogonal property between eigenfunctions (or between the derivatives of eigenfunctions) of anti-plane problem is exploited. We developed for the first time two sets of radius-independent orthogonal integrals for extraction of stress intensity factors (SIFs), so any order SIF can be extracted based on a certain known solution of displacement (an analytic result or a numerical result). Many numerical examples based on the finite element method of lines (FEMOL) show that the present method is very powerful and efficient.
Resumo:
Crack paths in an elastic layer on top of a substrate are considered. Crack growth is initiated from an edge crack in the layer. The plane of the initially straight crack forms an angle to the free surface. The load consists of a pair of forces applied at the crack mouth and parallel to the interface. Crack paths are calculated using a boundary element method. Crack growth is assumed to proceed along a path for which the mode II stress intensity factor vanishes. The inclination and the length of the initial crack are varied. The effect of two different substrates on the crack path evolution is demonstrated. A crack path initially leading perpendicularly to the interface is shown to be directionally unstable for a rigid substrate. Irrespective of its initial angle, the crack does not reach the interface, but reaches the free surface if the layer is infinitely long. At finite layer length the crack reaches the upper free surface if the initial crack inclination to the surface is small enough. For an inextendable flexible substrate, on the other hand, the crack reaches the interface if its initial inclination is large enough. For the flexible substrate an unstable path parallel with the sides of an infinitely long layer is identified. The results are compared with experimental results and discussed in view of characterisation of directionally unstable crack paths. The energy release rate for an inclined edge crack is determined analytically.
Resumo:
In the present paper, by use of the boundary integral equation method and the techniques of Green fundamental solution and singularity analysis, the dynamic infinite plane crack problem is investigated. For the first time, the problem is reduced to solving a system of mixed-typed integral equations in Laplace transform domain. The equations consist of ordinary boundary integral equations along the outer boundary and Cauchy singular integral equations along the crack line. The equations obtained are strictly proved to be equivalent with the dual integral equations obtained by Sih in the special case of dynamic Griffith crack problem. The mixed-type integral equations can be solved by combining the numerical method of singular integral equation with the ordinary boundary element method. Further use the numerical method for Laplace transform, several typical examples are calculated and their dynamic stress intensity factors are obtained. The results show that the method proposed is successful and can be used to solve more complicated problems.