927 resultados para phylodiversity dependence


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magnetotransport measurements on a high-mobility electron bilayer system formed in a wide GaAs quantum well reveal vanishing dissipative resistance under continuous microwave irradiation. Profound zero-resistance states (ZRS) appear even in the presence of additional intersubband scattering of electrons. We study the dependence of photoresistance on frequency, microwave power, and temperature. Experimental results are compared with a theory demonstrating that the conditions for absolute negative resistivity correlate with the appearance of ZRS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have performed a systematic study of the magnetic properties of a series of ferrimagnetic nanoparticles of Mg(x)Fe(3-x)O(4) (0.8 <= x <= 1.5) prepared by the combustion reaction method. The magnetization data can be well fitted by Bloch's law with T(3/2). Bloch's constant B determined from the fitting procedure was found to increase with Mg content x from similar to 3.09 X 10(-5) K(-3/2) for x = 0.8 to 6.27 X 10(-5) K(-3/2) for x=1.5. The exchange integral J(AB) and the spin-wave stiffness constant D of Mg(x)Fe(3-x)O(4) nanoparticles were also determined as similar to 0.842 and 0.574 meV and 296 and 202 meV angstrom(2) for specimens with x=0.8 and 1.5, respectively. These results are discussed in terms of cation redistribution among A and B sites on these nanostructured spinel ferrites. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3359709]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous resistively detected NMR (RDNMR) studies on the nu approximate to 1 quantum Hall state have reported a ""dispersionlike"" line shape and extremely short nuclear-spin-lattice relaxation times, observations which have been attributed to the formation of a skyrme lattice. Here we examine the evolution of the RDNMR line shape and nuclear-spin relaxation for Zeeman: Coulomb energy ratios ranging from 0.012 to 0.036. According to theory, suppression of the skyrme crystal, along with the associated Goldstone mode nuclear-spin-relaxation mechanism, is expected at the upper end of this range. However, we find that the anomalous line shape persists at high Zeeman energy, and only a modest decrease in the RDNMR-detected nuclear-spin-relaxation rate is observed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on temperature-dependent magnetoresistance measurements in balanced double quantum wells exposed to microwave irradiation for various frequencies. We have found that the resistance oscillations are described by the microwave-induced modification of electron distribution function limited by inelastic scattering (inelastic mechanism), up to a temperature of T*similar or equal to 4 K. With increasing temperature, a strong deviation of the oscillation amplitudes from the behavior predicted by this mechanism is observed, presumably indicating a crossover to another mechanism of microwave photoresistance, with similar frequency dependence. Our analysis shows that this deviation cannot be fully understood in terms of contribution from the mechanisms discussed in theory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magnetoresistance of two-dimensional electron systems with several occupied subbands oscillates owing to periodic modulation of the probability of intersubband transitions by the quantizing magnetic field. In addition to previous investigations of these magnetointersubband (MIS) oscillations in two-subband systems, we report on both experimental and theoretical studies of such a phenomenon in three-subband systems realized in triple quantum wells. We show that the presence of more than two subbands leads to a qualitatively different MIS oscillation picture, described as a superposition of several oscillating contributions. Under a continuous microwave irradiation, the magnetoresistance of triple-well systems exhibits an interference of MIS oscillations and microwave-induced resistance oscillations. The theory explaining these phenomena is presented in the general form, valid for an arbitrary number of subbands. A comparison of theory and experiment allows us to extract temperature dependence of quantum lifetime of electrons and to confirm the applicability of the inelastic mechanism of microwave photoresistance for the description of magnetotransport in multilayer systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A systematic study of magnetoresistance and dc magnetization was conducted in polycrystalline (Ru(1-x)Ir(x))Sr(2)GdCu(2)O(8) [(Ru,Ir)-1212] compounds, for 0 <= x <= 0.15. We found that a deviation from linearity in the normal-state electrical resistivity (rho) curves for temperatures below the magnetic transition temperature T(M) < 130 K can be properly described by a logarithmic term. The prefactor C(x, H) of this anomalous ln T contribution to rho(T) increases linearly with the Ir concentration, and diminishes rapidly with increasing applied magnetic field up to H approximate to 4 T, merging with the C(0,H) curve at higher magnetic fields. Correlation with magnetic susceptibility measurements supports a scenario of local perturbations in the orientation of Ru moments induced in the neighborhood of the Ir ions, therefore acting as scattering centers. The linear dependence of the prefactor C(x,H=0) and the superconducting transition temperature T(SC) on x points to a common source for the resistivity anomaly and the reduction in T(SC), suggesting that the CuO(2) and RuO(2) layers are not decoupled.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We observe a large positive magnetoresistance in a bilayer electron system (double quantum well) as the latter is driven by the external gate from double to single layer configuration. Both classical and quantum contributions to magnetotransport are found to be important for explanation of this effect. We demonstrate that these contributions can be separated experimentally by studying the magnetic-field dependence of the resistance at different gate voltages. The experimental results are analyzed and described by using the theory of low-field magnetotransport in the systems with two occupied subbands.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nonlinear regime of low-temperature magnetoresistance of double quantum wells in the region of magnetic fields below 1 T is studied both experimentally and theoretically. The observed inversion of the magnetointersubband oscillation peaks with increasing electric current and splitting of these peaks are described by the theory based on the kinetic equation for the isotropic nonequilibrium part of electron distribution function. The inelastic-scattering time of electrons is determined from the current dependence of the inversion field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spectroscopy of the centrosymmetric magnetic semiconductors EuTe and EuSe reveals spin-induced optical second harmonic generation (SHG) in the band gap vicinity at 2.1-2.4 eV. The magnetic field and temperature dependence demonstrates that the SHG arises from the bulk of the materials due to a novel type of nonlinear optical susceptibility caused by the magnetic dipole contribution combined with spontaneous or induced magnetization. This spin-induced susceptibility opens access to a wide class of centrosymmetric systems by harmonics generation spectroscopy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The addition of transition metals to III-V semiconductors radically changes their electronic, magnetic, and structural properties. We show by ab initio calculations that in contrast to the conventional semiconductor alloys, the lattice parameter in magnetic semiconductor alloys, including those with diluted concentration, strongly deviates from Vegard's law. We find a direct correlation between the magnetic moment and the anion-transition metal bond lengths and derive a simple and general formula that determines the lattice parameter of a particular magnetic semiconductor by considering both the composition and magnetic moment. This dependence can explain some experimentally observed anomalies and stimulate other kind of investigations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We show that the ground state of zigzag bilayer graphene nanoribbons is nonmagnetic. It also possesses a finite gap, which has a nonmonotonic dependence with the width as a consequence of the competition between bulk and strongly attractive edge interactions. All results were obtained using ab initio total-energy density functional theory calculations with the inclusion of parametrized van der Waals interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, we demonstrate field-induced Bose-Einstein condensation (BEC) in the organic compound NiCl(2)-4SC(NH(2))(2) using ac susceptibility measurements down to 1 mK. The Ni S=1 spins exhibit 3D XY antiferromagnetism between a lower critical field H(c1)similar to 2 T and a upper critical field H(c2)similar to 12 T. The results show a power-law temperature dependence of the phase transition line H(c1)(T)-H(c1)(0)=aT(alpha) with alpha=1.47 +/- 0.10 and H(c1)(0)=2.053 T, consistent with the 3D BEC universality class. Near H(c2), a kink was found in the phase boundary at approximately 150 mK.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Here we use magnetic resonant x-ray diffraction to study the magnetic order in a 1.5 mu m EuTe film grown on (111) BaF(2) by molecular-beam epitaxy. At Eu L(II) and L(III) absorption edges, a resonant enhancement of more than two orders was observed for the sigma ->pi(') diffracted intensity at half-order reciprocal-lattice points, consistent with the magnetic character of the scattering. We studied the evolution of the (1/21/21/2) magnetic reflection with temperature. When heating toward the Neel temperature (T(N)), the integrated intensity decreased monotonously and showed no hysteresis upon cooling again, indicating a second-order phase transition. A power-law fit to the magnetization versus temperature curve yielded T(N)=9.99(1) K and a critical exponent beta=0.36(1), which agrees with the renormalization theory results for three-dimensional Heisenberg magnets. The fits to the sublattice magnetization dependence with temperature, disregarding and considering fourth-order exchange interactions, evidenced the importance of the latter for a correct description of magnetism in EuTe. A value of 0.009 was found for the (2j(1)+j(2))/J(2) ratio between the Heisenberg J(2) and fourth-order j(1,2) exchange constants. The magnetization curve exhibited a round-shaped region just near T(N) accompanied by an increase in the magnetic peak width, which was attributed to critical scattering above T(N). The comparison of the intensity ratio between the (1/21/21/2) and the (1/21/21/2) magnetic reflections proved that the Eu(2+) spins align within the (111) planes, and the azimuthal dependence of the (1/21/21/2) magnetic peak is consistent with the model of equally populated S domains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The results on the measurement of electrical conductivity and magnetoconductivity of a GaAs double quantum well between 0.5 and 1.1 K are reported. The zero magnetic-field conductivity is well described from the point of view of contributions made by both the weak localization and electron-electron interaction. At low field and low temperature, the magnetoconductivity is dominated by the weak localization effect only. Using the weak localization method, we have determined the electron dephasing times tau(phi) and tunneling times tau(t). Concerning tunneling, we concluded that tau(t) presents a minimum around the balance point; concerning dephasing, we observed an anomalous dependence on temperature and conductivity (or elastic mean free path) of tau(phi). This anomalous behavior cannot be explained in terms of the prevailing concepts for the electron-electron interaction in high-mobility two-dimensional electron systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present the experimental and theoretical studies of the magnetoresistance oscillations induced by the resonance transitions of electrons between the tunnel-coupled states in double quantum wells. The suppression of these oscillations with increasing temperature is irrelevant to the thermal broadening of the Fermi distribution and reflects the temperature dependence of the quantum lifetime of electrons. The gate control of the period and amplitude of the oscillations is demonstrated.