808 resultados para new web based frameworks
Resumo:
This paper reports some experiments in using SVG (Scalable Vector Graphics), rather than the browser default of (X)HTML/CSS, as a potential Web-based rendering technology, in an attempt to create an approach that integrates the structural and display aspects of a Web document in a single XML-compliant envelope. Although the syntax of SVG is XML based, the semantics of the primitive graphic operations more closely resemble those of page description languages such as PostScript or PDF. The principal usage of SVG, so far, is for inserting complex graphic material into Web pages that are predominantly controlled via (X)HTML and CSS. The conversion of structured and unstructured PDF into SVG is discussed. It is found that unstructured PDF converts into pages of SVG with few problems, but difficulties arise when one attempts to map the structural components of a Tagged PDF into an XML skeleton underlying the corresponding SVG. These difficulties are not fundamentally syntactic; they arise largely because browsers are innately bound to (X)HTML/CSS as their default rendering model. Some suggestions are made for ways in which SVG could be more totally integrated into browser functionality, with the possibility that future browsers might be able to use SVG as their default rendering paradigm.
Resumo:
A variety of physical and biomedical imaging techniques, such as digital holography, interferometric synthetic aperture radar (InSAR), or magnetic resonance imaging (MRI) enable measurement of the phase of a physical quantity additionally to its amplitude. However, the phase can commonly only be measured modulo 2π, as a so called wrapped phase map. Phase unwrapping is the process of obtaining the underlying physical phase map from the wrapped phase. Tile-based phase unwrapping algorithms operate by first tessellating the phase map, then unwrapping individual tiles, and finally merging them to a continuous phase map. They can be implemented computationally efficiently and are robust to noise. However, they are prone to failure in the presence of phase residues or erroneous unwraps of single tiles. We tried to overcome these shortcomings by creating novel tile unwrapping and merging algorithms as well as creating a framework that allows to combine them in modular fashion. To increase the robustness of the tile unwrapping step, we implemented a model-based algorithm that makes efficient use of linear algebra to unwrap individual tiles. Furthermore, we adapted an established pixel-based unwrapping algorithm to create a quality guided tile merger. These original algorithms as well as previously existing ones were implemented in a modular phase unwrapping C++ framework. By examining different combinations of unwrapping and merging algorithms we compared our method to existing approaches. We could show that the appropriate choice of unwrapping and merging algorithms can significantly improve the unwrapped result in the presence of phase residues and noise. Beyond that, our modular framework allows for efficient design and test of new tile-based phase unwrapping algorithms. The software developed in this study is freely available.
Resumo:
In this thesis, tool support is addressed for the combined disciplines of Model-based testing and performance testing. Model-based testing (MBT) utilizes abstract behavioral models to automate test generation, thus decreasing time and cost of test creation. MBT is a functional testing technique, thereby focusing on output, behavior, and functionality. Performance testing, however, is non-functional and is concerned with responsiveness and stability under various load conditions. MBPeT (Model-Based Performance evaluation Tool) is one such tool which utilizes probabilistic models, representing dynamic real-world user behavior patterns, to generate synthetic workload against a System Under Test and in turn carry out performance analysis based on key performance indicators (KPI). Developed at Åbo Akademi University, the MBPeT tool is currently comprised of a downloadable command-line based tool as well as a graphical user interface. The goal of this thesis project is two-fold: 1) to extend the existing MBPeT tool by deploying it as a web-based application, thereby removing the requirement of local installation, and 2) to design a user interface for this web application which will add new user interaction paradigms to the existing feature set of the tool. All phases of the MBPeT process will be realized via this single web deployment location including probabilistic model creation, test configurations, test session execution against a SUT with real-time monitoring of user configurable metric, and final test report generation and display. This web application (MBPeT Dashboard) is implemented with the Java programming language on top of the Vaadin framework for rich internet application development. The Vaadin framework handles the complicated web communications processes and front-end technologies, freeing developers to implement the business logic as well as the user interface in pure Java. A number of experiments are run in a case study environment to validate the functionality of the newly developed Dashboard application as well as the scalability of the solution implemented in handling multiple concurrent users. The results support a successful solution with regards to the functional and performance criteria defined, while improvements and optimizations are suggested to increase both of these factors.
Resumo:
Most economic transactions nowadays are due to the effective exchange of information in which digital resources play a huge role. New actors are coming into existence all the time, so organizations are facing difficulties in keeping their current customers and attracting new customer segments and markets. Companies are trying to find the key to their success and creating superior customer value seems to be one solution. Digital technologies can be used to deliver value to customers in ways that extend customers’ normal conscious experiences in the context of time and space. By creating customer value, companies can gain the increased loyalty of existing customers and better ways to serve new customers effectively. Based on these assumptions, the objective of this study was to design a framework to enable organizations to create customer value in digital business. The research was carried out as a literature review and an empirical study, which consisted of a web-based survey and semi-structured interviews. The data from the empirical study was analyzed as mixed research with qualitative and quantitative methods. These methods were used since the object of the study was to gain deeper understanding about an existing phenomena. Therefore, the study used statistical procedures and value creation is described as a phenomenon. The framework was designed first based on the literature and updated based on the findings from the empirical study. As a result, relationship, understanding the customer, focusing on the core product or service, the product or service quality, incremental innovations, service range, corporate identity, and networks were chosen as the top elements of customer value creation. Measures for these elements were identified. With the measures, companies can manage the elements in value creation when dealing with present and future customers and also manage the operations of the company. In conclusion, creating customer value requires understanding the customer and a lot of information sharing, which can be eased by digital resources. Understanding the customer helps to produce products and services that fulfill customers’ needs and desires. This could result in increased sales and make it easier to establish efficient processes.
Resumo:
International audience
Resumo:
Instructional methods employed by teachers of singing are mostly drawn from personal experience, personal reflections, and methods encountered in their own voice training (Welch & Howard, 2005). Even in Academia, singing pedagogy is one of the few disciplines in which research of teaching/learning practice efficacy has not been established (Crocco, et al., 2016). This dissertation argues the reason for this deficit is a lack of operationalization of constructs in singing, which, to date has not been undertaken. The researcher addresses issues of paradigm, epistemology, and methodology to suggest an appropriate model of experimental research towards the assessment of teaching/learning practice efficacy. A study was conducted adapting attentional focus research methodologies to test the effect of attentional focus on singing voice quality in adult novice singers. Based on previous attentional focus studies, it was hypothesized that external focus conditions would result in superior singing voice quality than internal focus conditions. While the hypothesis was partially supported by the data, the researcher welcomed refinement of the suggested research model. It is hoped that new research methodologies will emerge to investigate singing phenomena, yielding data that may be used towards the development of evidence-based frameworks for singing training.
Resumo:
Nurse rostering is a complex scheduling problem that affects hospital personnel on a daily basis all over the world. This paper presents a new component-based approach with adaptive perturbations, for a nurse scheduling problem arising at a major UK hospital. The main idea behind this technique is to decompose a schedule into its components (i.e. the allocated shift pattern of each nurse), and then mimic a natural evolutionary process on these components to iteratively deliver better schedules. The worthiness of all components in the schedule has to be continuously demonstrated in order for them to remain there. This demonstration employs a dynamic evaluation function which evaluates how well each component contributes towards the final objective. Two perturbation steps are then applied: the first perturbation eliminates a number of components that are deemed not worthy to stay in the current schedule; the second perturbation may also throw out, with a low level of probability, some worthy components. The eliminated components are replenished with new ones using a set of constructive heuristics using local optimality criteria. Computational results using 52 data instances demonstrate the applicability of the proposed approach in solving real-world problems.
Resumo:
Background: Protein structural alignment is one of the most fundamental and crucial areas of research in the domain of computational structural biology. Comparison of a protein structure with known structures helps to classify it as a new or belonging to a known group of proteins. This, in turn, is useful to determine the function of protein, its evolutionary relationship with other protein molecules and grasping principles underlying protein architecture and folding. Results: A large number of protein structure alignment methods are available. Each protein structure alignment tool has its own strengths andweaknesses that need to be highlighted.We compared and presented results of six most popular and publically available servers for protein structure comparison. These web-based servers were compared with the respect to functionality (features provided by these servers) and accuracy (how well the structural comparison is performed). The CATH was used as a reference. The results showed that overall CE was top performer. DALI and PhyreStorm showed similar results whereas PDBeFold showed the lowest performance. In case of few secondary structural elements, CE, DALI and PhyreStorm gave 100% success rate. Conclusion: Overall none of the structural alignment servers showed 100% success rate. Studies of overall performance, effect of mainly alpha and effect of mainly beta showed consistent performance. CE, DALI, FatCat and PhyreStorm showed more than 90% success rate.
Resumo:
El principal objetivo de este trabajo fin de grado es la implementación de una aplicación web que permita realizar actividades de enseñanza/aprendizaje en las ramas de cálculo y álgebra de las matemáticas, enfocada principalmente en los contenidos impartidos en las asignaturas de matemáticas en Bachillerato, concretamente de la unidad de realización de derivadas. Se han desarrollado dos modelos: Uno para el profesor, que permite la generación de los ejercicios, así como la consulta de las posibles soluciones. Esta aplicación ofrece al docente la posibilidad de mediante una serie de ajustes, generar de forma dinámica las actividades deseadas. Otro para el alumno, que permite la realización de las actividades y la inclusión de respuestas paso a paso, además de la visualización de las correcciones a sus procedimientos. Para el desarrollo de estas aplicaciones se ha usado el lenguaje Java con ayuda de JSON para el intercambio de datos. También se ha utilizado el motor de respuestas Wolfram Alpha para realizar las correcciones paso a paso de las respuestas de los alumnos.
Resumo:
Background: This paper introduces the new National Library for Health Skin Conditions Specialist Library http://www.library.nhs.uk/skin. Description: The aims, scope and audience of the new NLH Skin Conditions Specialist Library, and the composition and functions of its core Project Team, Editorial Team and Stakeholders Group are described. The Library's collection building strategy, resource and information types, editorial policies, quality checklist, taxonomy for content indexing, organisation and navigation, and user interface are all presented in detail. The paper also explores the expected impact and utility of the new Library, as well as some possible future directions for further development. Conclusion: The Skin Conditions Specialist Library is not just another new Web site that dermatologists might want to add to their Internet favourites then forget about it. It is intended to be a practical, "one-stop shop" dermatology information service for everyday practical use, offering high quality, up-to-date resources, and adopting robust evidence-based and knowledge management approaches.
Resumo:
POSTDATA is a 5 year's European Research Council (ERC) Starting Grant Project that started in May 2016 and is hosted by the Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain. The context of the project is the corpora of European Poetry (EP), with a special focus on poetic materials from different languages and literary traditions. POSTDATA aims to offer a standardized model in the philological field and a metadata application profile (MAP) for EP in order to build a common classification of all these poetic materials. The information of Spanish, Italian and French repertoires will be published in the Linked Open Data (LOD) ecosystem. Later we expect to extend the model to include additional corpora. There are a number of Web Based Information Systems in Europe with repertoires of poems available to human consumption but not in an appropriate condition to be accessible and reusable by the Semantic Web. These systems are not interoperable; they are in fact locked in their databases and proprietary software, not suitable to be linked in the Semantic Web. A way to make this data interoperable is to develop a MAP in order to be able to publish this data available in the LOD ecosystem, and also to publish new data that will be created and modeled based on this MAP. To create a common data model for EP is not simple since the existent data models are based on conceptualizations and terminology belonging to their own poetical traditions and each tradition has developed an idiosyncratic analytical terminology in a different and independent way for years. The result of this uncoordinated evolution is a set of varied terminologies to explain analogous metrical phenomena through the different poetic systems whose correspondences have been hardly studied – see examples in González-Blanco & Rodríguez (2014a and b). This work has to be done by domain experts before the modeling actually starts. On the other hand, the development of a MAP is a complex task though it is imperative to follow a method for this development. The last years Curado Malta & Baptista (2012, 2013a, 2013b) have been studying the development of MAP's in a Design Science Research (DSR) methodological process in order to define a method for the development of MAPs (see Curado Malta (2014)). The output of this DSR process was a first version of a method for the development of Metadata Application Profiles (Me4MAP) (paper to be published). The DSR process is now in the validation phase of the Relevance Cycle to validate Me4MAP. The development of this MAP for poetry will follow the guidelines of Me4MAP and this development will be used to do the validation of Me4MAP. The final goal of the POSTDATA project is: i) to be able to publish all the data locked in the WIS, in LOD, where any agent interested will be able to build applications over the data in order to serve final users; ii) to build a Web platform where: a) researchers, students and other final users interested in EP will be able to access poems (and their analyses) of all databases; b) researchers, students and other final users will be able to upload poems, the digitalized images of manuscripts, and fill in the information concerning the analysis of the poem, collaboratively contributing to a LOD dataset of poetry.
Resumo:
Este proyecto ha consistido en la realización de una aplicación web para cubrir una necesidad del centro universitario; la necesidad de gestionar los horarios y la asignación de aulas cada inicio de curso de una forma más automática de la que se usa en la actualidad. El objetivo principal ha sido que la aplicación fuera lo más intuitiva posible y que tenga una facilidad de uso que motivase su utilización. Para ello nos hemos decantado por una serie de características tanto visuales (distribución de la información, códigos de colores), como de uso (sistema de Drag&Drop). La aplicación tiene tres módulos principales: Un primer módulo para el manejo de los horarios, el cual nos permite la construcción de un horario para un grupo determinado evitando cualquier tipo de conflicto.El segundo módulo para la asignación de grupo a aulas, de forma que nos permite tener un control de los espacios del centro. El tercero y último, con una fuerte relación con el segundo, que en este caso se utiliza para asignar asignaturas optativas a aulas. Todo esto va acompañado por una variedad de páginas de información y de una vista administrativa para gestionar los datos necesarios para usar la aplicación. Una de las ventajas más importantes que tiene esta aplicación es la automatización a la hora de realizar todas las comprobaciones necesarias para hacer cualquier asignación. Debido a la envergadura del proyecto, optamos por realizar este proyecto conjuntamente entre tres personas para ser capaces de ofrecer un producto lo más completo posible sin salirnos de los límites de este trabajo de fin de grado.
Resumo:
The fruit is one of the most complex and important structures produced by flowering plants, and understanding the development and maturation process of fruits in different angiosperm species with diverse fruit structures is of immense interest. In the work presented here, molecular genetics and genomic analysis are used to explore the processes that form the fruit in two species: The model organism Arabidopsis and the diploid strawberry Fragaria vesca. One important basic question concerns the molecular genetic basis of fruit patterning. A long-standing model of Arabidopsis fruit (the gynoecium) patterning holds that auxin produced at the apex diffuses downward, forming a gradient that provides apical-basal positional information to specify different tissue types along the gynoecium’s length. The proposed gradient, however, has never been observed and the model appears inconsistent with a number of observations. I present a new, alternative model, wherein auxin acts to establish the adaxial-abaxial domains of the carpel primordia, which then ensures proper development of the final gynoecium. A second project utilizes genomics to identify genes that regulate fruit color by analyzing the genome sequences of Fragaria vesca, a species of wild strawberry. Shared and distinct SNPs among three F. vesca accessions were identified, providing a foundation for locating candidate mutations underlying phenotypic variations among different F. vesca accessions. Through systematic analysis of relevant SNP variants, a candidate SNP in FveMYB10 was identified that may underlie the fruit color in the yellow-fruited accessions, which was subsequently confirmed by functional assays. Our lab has previously generated extensive RNA-sequencing data that depict genome-scale gene expression profiles in F. vesca fruit and flower tissues at different developmental stages. To enhance the accessibility of this dataset, the web-based eFP software was adapted for this dataset, allowing visualization of gene expression in any tissues by user-initiated queries. Together, this thesis work proposes a well-supported new model of fruit patterning in Arabidopsis and provides further resources for F. vesca, including genome-wide variant lists and the ability to visualize gene expression. This work will facilitate future work linking traits of economic importance to specific genes and gaining novel insights into fruit patterning and development.
Resumo:
New nanocomposites based on polyethylene have been prepared by in situ polymerization of ethylene in presence of mesoporous MCM-41. The polymerization reactions were performed using a zirconocene catalyst either under homogenous conditions or supported onto mesoporous MCM-41 particles, which are synthesized and decorated post-synthesis with two silanes before polymerization in order to promote an enhanced interfacial adhesion. The existence of polyethylene chains able to crystallize within the mesoporous channels in the resulting nanocomposites is figured out from the small endothermic process, located at around 80 C, on heating calorimetric experiments, in addition to the main melting endotherm. These results indicate that polyethylene macrochains can grow up during polymerization either outside or inside the MCM-41 channels, these keeping their regular hexagonal arrangements. Mechanical response is observed to be dependent on the content in mesoporous MCM-41 and on the crystalline features of polyethylene. Accordingly, stiffness increases and deformability decreases in the nanocomposites as much as MCM-41 content is enlarged and polyethylene amount within channels is raised. Ultimate mechanical performance improves with MCM-41 incorporation without varying the final processing temperature.
Resumo:
To analyze the characteristics and predict the dynamic behaviors of complex systems over time, comprehensive research to enable the development of systems that can intelligently adapt to the evolving conditions and infer new knowledge with algorithms that are not predesigned is crucially needed. This dissertation research studies the integration of the techniques and methodologies resulted from the fields of pattern recognition, intelligent agents, artificial immune systems, and distributed computing platforms, to create technologies that can more accurately describe and control the dynamics of real-world complex systems. The need for such technologies is emerging in manufacturing, transportation, hazard mitigation, weather and climate prediction, homeland security, and emergency response. Motivated by the ability of mobile agents to dynamically incorporate additional computational and control algorithms into executing applications, mobile agent technology is employed in this research for the adaptive sensing and monitoring in a wireless sensor network. Mobile agents are software components that can travel from one computing platform to another in a network and carry programs and data states that are needed for performing the assigned tasks. To support the generation, migration, communication, and management of mobile monitoring agents, an embeddable mobile agent system (Mobile-C) is integrated with sensor nodes. Mobile monitoring agents visit distributed sensor nodes, read real-time sensor data, and perform anomaly detection using the equipped pattern recognition algorithms. The optimal control of agents is achieved by mimicking the adaptive immune response and the application of multi-objective optimization algorithms. The mobile agent approach provides potential to reduce the communication load and energy consumption in monitoring networks. The major research work of this dissertation project includes: (1) studying effective feature extraction methods for time series measurement data; (2) investigating the impact of the feature extraction methods and dissimilarity measures on the performance of pattern recognition; (3) researching the effects of environmental factors on the performance of pattern recognition; (4) integrating an embeddable mobile agent system with wireless sensor nodes; (5) optimizing agent generation and distribution using artificial immune system concept and multi-objective algorithms; (6) applying mobile agent technology and pattern recognition algorithms for adaptive structural health monitoring and driving cycle pattern recognition; (7) developing a web-based monitoring network to enable the visualization and analysis of real-time sensor data remotely. Techniques and algorithms developed in this dissertation project will contribute to research advances in networked distributed systems operating under changing environments.