801 resultados para neural network technique


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ski resorts are deploying more and more systems of artificial snow. These tools are necessary to ensure an important economic activity for the high alpine valleys. However, artificial snow raises important environmental issues that can be reduced by an optimization of its production. This paper presents a software prototype based on artificial intelligence to help ski resorts better manage their snowpack. It combines on one hand a General Neural Network for the analysis of the snow cover and the spatial prediction, with on the other hand a multiagent simulation of skiers for the analysis of the spatial impact of ski practice. The prototype has been tested on the ski resort of Verbier (Switzerland).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The paper presents the Multiple Kernel Learning (MKL) approach as a modelling and data exploratory tool and applies it to the problem of wind speed mapping. Support Vector Regression (SVR) is used to predict spatial variations of the mean wind speed from terrain features (slopes, terrain curvature, directional derivatives) generated at different spatial scales. Multiple Kernel Learning is applied to learn kernels for individual features and thematic feature subsets, both in the context of feature selection and optimal parameters determination. An empirical study on real-life data confirms the usefulness of MKL as a tool that enhances the interpretability of data-driven models.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Vulnerability and psychic illness Based on a sample of 1701 college and university students from four different sites in Switzerland, the U.S., and Argentina, this study investigated the interrelationships between insufficient coping skills under chronic stress and impaired general health. We sought to develop standardised means for "early" identification of students at risk of mental health problems, as these students may benefit from "early" interventions before psychiatric symptoms develop and reach clinically relevant thresholds. All students completed two self-report questionnaires: the Coping Strategies Inventory "COPE" and the Zurich Health Questionnaire "ZHQ", with the latter assessing "regular exercises", "consumption behavior", "impaired physical health", "psychosomatic disturbances", and "impaired mental health". This data was subjected to structure analyses based on neural network approaches, using the different study sites' data subsets as independent "learning" and "test" samples. We found two highly stable COPE scales that quantified basic coping behaviour in terms of "activity-passivity" and "defeatism-resilience". The excellent reproducibility across study sites suggested that the new scales characterise socioculturally independent personality traits. Correlation analyses for external validation revealed a close relationship between high scores on the defeatism scale and impaired physical and mental health, hence underlining the scales' clinical relevance. Our results suggested in particular: (1.) the proposed method to be a powerful screening tool for early detection and prevention of psychiatric disorders; (2.) physical activity like regular exercises to play a critical role not only in preventing health problems but also in contributing to early intervention programs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The cross-recognition of peptides by cytotoxic T lymphocytes is a key element in immunology and in particular in peptide based immunotherapy. Here we develop three-dimensional (3D) quantitative structure-activity relationships (QSARs) to predict cross-recognition by Melan-A-specific cytotoxic T lymphocytes of peptides bound to HLA A*0201 (hereafter referred to as HLA A2). First, we predict the structure of a set of self- and pathogen-derived peptides bound to HLA A2 using a previously developed ab initio structure prediction approach [Fagerberg et al., J. Mol. Biol., 521-46 (2006)]. Second, shape and electrostatic energy calculations are performed on a 3D grid to produce similarity matrices which are combined with a genetic neural network method [So et al., J. Med. Chem., 4347-59 (1997)] to generate 3D-QSAR models. The models are extensively validated using several different approaches. During the model generation, the leave-one-out cross-validated correlation coefficient (q (2)) is used as the fitness criterion and all obtained models are evaluated based on their q (2) values. Moreover, the best model obtained for a partitioned data set is evaluated by its correlation coefficient (r = 0.92 for the external test set). The physical relevance of all models is tested using a functional dependence analysis and the robustness of the models obtained for the entire data set is confirmed using y-randomization. Finally, the validated models are tested for their utility in the setting of rational peptide design: their ability to discriminate between peptides that only contain side chain substitutions in a single secondary anchor position is evaluated. In addition, the predicted cross-recognition of the mono-substituted peptides is confirmed experimentally in chromium-release assays. These results underline the utility of 3D-QSARs in peptide mimetic design and suggest that the properties of the unbound epitope are sufficient to capture most of the information to determine the cross-recognition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A parametric procedure for the blind inversion of nonlinear channels is proposed, based on a recent method of blind source separation in nonlinear mixtures. Experiments show that the proposed algorithms perform efficiently, even in the presence of hard distortion. The method, based on the minimization of the output mutual information, needs the knowledge of log-derivative of input distribution (the so-called score function). Each algorithm consists of three adaptive blocks: one devoted to adaptive estimation of the score function, and two other blocks estimating the inverses of the linear and nonlinear parts of the channel, (quasi-)optimally adapted using the estimated score functions. This paper is mainly concerned by the nonlinear part, for which we propose two parametric models, the first based on a polynomial model and the second on a neural network, while [14, 15] proposed non-parametric approaches.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work we present a simulation of a recognition process with perimeter characterization of a simple plant leaves as a unique discriminating parameter. Data coding allowing for independence of leaves size and orientation may penalize performance recognition for some varieties. Border description sequences are then used to characterize the leaves. Independent Component Analysis (ICA) is then applied in order to study which is the best number of components to be considered for the classification task, implemented by means of an Artificial Neural Network (ANN). Obtained results with ICA as a pre-processing tool are satisfactory, and compared with some references our system improves the recognition success up to 80.8% depending on the number of considered independent components.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Intellectual disability has long been associated with deficits in socio-emotional processing. However, studies investigating brain dynamics of maladaptive socio-emotional skills associated with intellectual disability are scarce. Here, we compared differences in brain activity between low intelligence quotient (I.Q.<75, N=13) and normal controls (N=15) while evaluating their subjective emotions. Positive (P) and negative (N) valenced pictures were presented one at a time to participants of both groups, at a rate of ¾. The task required that each participant evaluate their subjective emotion and press a predefined push-button when done, alternatively P and N. Electroencephalographic (EEG) signals were continuously recorded, and the 1000ms time window following each picture was analyzed offline for power in frequency domain. Alpha low (8-10Hz) and upper (10-13Hz) frequency bands were then compared for both groups and for both P and N emotions in 12 distributed scalp electrodes. The qualitative evaluation of emotions was similar between both groups, with constant longer reaction times for the low IQ participants. The EEG signal comparison shows marked power decrease in upper alpha frequency range for N emotions in low intelligence group. Otherwise no significant difference was noticed between low and normal IQ. Main findings of the present study are (1) results do not support the hypothesis that impairment in developmental intelligence roots in maladaptive emotional processing; (2) the strong alpha power suppression during negative-induced emotions suggests the involvement of an extended neural network and more effortful inhibition processes than positive ones. We call for further studies with a larger sample.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Methods used to analyze one type of nonstationary stochastic processes?the periodically correlated process?are considered. Two methods of one-step-forward prediction of periodically correlated time series are examined. One-step-forward predictions made in accordance with an autoregression model and a model of an artificial neural network with one latent neuron layer and with an adaptation mechanism of network parameters in a moving time window were compared in terms of efficiency. The comparison showed that, in the case of prediction for one time step for time series of mean monthly water discharge, the simpler autoregression model is more efficient.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objective of this work was to evaluate sampling density on the prediction accuracy of soil orders, with high spatial resolution, in a viticultural zone of Serra Gaúcha, Southern Brazil. A digital elevation model (DEM), a cartographic base, a conventional soil map, and the Idrisi software were used. Seven predictor variables were calculated and read along with soil classes in randomly distributed points, with sampling densities of 0.5, 1, 1.5, 2, and 4 points per hectare. Data were used to train a decision tree (Gini) and three artificial neural networks: adaptive resonance theory, fuzzy ARTMap; self‑organizing map, SOM; and multi‑layer perceptron, MLP. Estimated maps were compared with the conventional soil map to calculate omission and commission errors, overall accuracy, and quantity and allocation disagreement. The decision tree was less sensitive to sampling density and had the highest accuracy and consistence. The SOM was the less sensitive and most consistent network. The MLP had a critical minimum and showed high inconsistency, whereas fuzzy ARTMap was more sensitive and less accurate. Results indicate that sampling densities used in conventional soil surveys can serve as a reference to predict soil orders in Serra Gaúcha.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The paper deals with the development and application of the methodology for automatic mapping of pollution/contamination data. General Regression Neural Network (GRNN) is considered in detail and is proposed as an efficient tool to solve this problem. The automatic tuning of isotropic and an anisotropic GRNN model using cross-validation procedure is presented. Results are compared with k-nearest-neighbours interpolation algorithm using independent validation data set. Quality of mapping is controlled by the analysis of raw data and the residuals using variography. Maps of probabilities of exceeding a given decision level and ?thick? isoline visualization of the uncertainties are presented as examples of decision-oriented mapping. Real case study is based on mapping of radioactively contaminated territories.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objective of this work was to develop, validate, and compare 190 artificial intelligence-based models for predicting the body mass of chicks from 2 to 21 days of age subjected to different duration and intensities of thermal challenge. The experiment was conducted inside four climate-controlled wind tunnels using 210 chicks. A database containing 840 datasets (from 2 to 21-day-old chicks) - with the variables dry-bulb air temperature, duration of thermal stress (days), chick age (days), and the daily body mass of chicks - was used for network training, validation, and tests of models based on artificial neural networks (ANNs) and neuro-fuzzy networks (NFNs). The ANNs were most accurate in predicting the body mass of chicks from 2 to 21 days of age after they were subjected to the input variables, and they showed an R² of 0.9993 and a standard error of 4.62 g. The ANNs enable the simulation of different scenarios, which can assist in managerial decision-making, and they can be embedded in the heating control systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Työn tavoitteena on tutkia deittipalvelun käyttäjien anonyymiaineistoa neuroverkko-opetuksessa segmentoituneiden piirrekarttojen (SOM, Self-Organizing Map) avulla. Näiden piirrekarttojen avulla on tarkoitus selvittää, löytyykö mahdollisesti selkeitä SMS- ja e-mail - käyttäjäryhmiä. Tutkimusta lähestytään perehtymällä ensin yrityksen tekniseen palvelualusta-arkkitehtuuriin ja myös varsinaiseen deittipalveluun käyttäjän kannalta.Tutkimus aloitettiin koodaamalla tietoaineisto SOM Toolbox-ohjelmalle käytettäväksi. Varsinaisia tutkimustuloksia analysoitiin valitsemalla otoksia neuroverkko-opetuksessa segmentoituneista piirrekartoista. Saadut tulokset osoittavat, ettäSOM-teknologia soveltuu hyvin sisältöpalveluiden sosioteknologiseen tutkimukseen ja sitä on myös mahdollista käyttää asiakkuudenhallinnassa erilaisten käyttäjäryhmien profilointiin.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Prosessitietoliikenneverkko toimii mm. energian tuotannon, siirron ja jakelun käytönvalvontajärjestelmien tiedonsiirron alustana. Tietoliikenneverkkojen rooli osana yrityksen operatiivisia prosesseja kasvaa järjestelmäuusintojen myötä ja järjestelmien tehokas hyödyntäminen vaatii luotettavat sekä nopeat tietoverkot. Uusittavien järjestelmien tietoliikenneratkaisut perustuvat pääsääntöisesti Ethernetpohjaiseen TCP/IP-verkkotekniikkaan. Tällä hetkellä prosessijärjestelmien tiedonsiirtoyhteydet kenttälaitteiden ja valvomojärjestelmien välillä on pääsääntöisesti toteutettu PCM-siirtojärjestelmällä tai kiinteän yhteyden modeemeilla. Käytössä oleva PCM-tekniikka on elinkaarensa loppupuolella ja tiedonsiirtonopeudet sekä liityntärajapinnat eivät täytä nykyaikaisten prosessijärjestelmien tiedonsiirto¬vaatimuksia. Työssä käytiin läpikeskeisimmät Ethernet-tekniikkaan ja TCP/IP-protokollaperheeseen liittyvät standardit ja verkon aktiivilaitteet. Vaatimusmäärittelyissä selvitettiin Helsingin Energian eri liiketoimintayksiköiden tarpeita sekä energia-alan lainsäädännön vaatimuksia prosessitietoliikenneverkolle. Tarpeiden ja vaatimusten pohjalta verrattiin kolmea eri vaihtoehtoista verkkotekniikkaa: kytkintekniikkaa, reititintekniikkaa ja MPLS-tekniikkaa. Vertailun perusteella valitulla verkkotekniikalla tehtiin suunnitelma avoimesta, valmistajasta riippumattomasta standardeihin perustuvasta yritystason Ethernet-pohjaisesta TCP/IP prosessiverkkoratkaisusta. Johtopäätöksissä pohditaan valitun ratkaisun käytettävyyttä, tietoturvaa sekä toimenpiteitä niiden kehittämiseksi.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a novel image classification scheme for benthic coral reef images that can be applied to both single image and composite mosaic datasets. The proposed method can be configured to the characteristics (e.g., the size of the dataset, number of classes, resolution of the samples, color information availability, class types, etc.) of individual datasets. The proposed method uses completed local binary pattern (CLBP), grey level co-occurrence matrix (GLCM), Gabor filter response, and opponent angle and hue channel color histograms as feature descriptors. For classification, either k-nearest neighbor (KNN), neural network (NN), support vector machine (SVM) or probability density weighted mean distance (PDWMD) is used. The combination of features and classifiers that attains the best results is presented together with the guidelines for selection. The accuracy and efficiency of our proposed method are compared with other state-of-the-art techniques using three benthic and three texture datasets. The proposed method achieves the highest overall classification accuracy of any of the tested methods and has moderate execution time. Finally, the proposed classification scheme is applied to a large-scale image mosaic of the Red Sea to create a completely classified thematic map of the reef benthos

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The parameter setting of a differential evolution algorithm must meet several requirements: efficiency, effectiveness, and reliability. Problems vary. The solution of a particular problem can be represented in different ways. An algorithm most efficient in dealing with a particular representation may be less efficient in dealing with other representations. The development of differential evolution-based methods contributes substantially to research on evolutionary computing and global optimization in general. The objective of this study is to investigatethe differential evolution algorithm, the intelligent adjustment of its controlparameters, and its application. In the thesis, the differential evolution algorithm is first examined using different parameter settings and test functions. Fuzzy control is then employed to make control parameters adaptive based on an optimization process and expert knowledge. The developed algorithms are applied to training radial basis function networks for function approximation with possible variables including centers, widths, and weights of basis functions and both having control parameters kept fixed and adjusted by fuzzy controller. After the influence of control variables on the performance of the differential evolution algorithm was explored, an adaptive version of the differential evolution algorithm was developed and the differential evolution-based radial basis function network training approaches were proposed. Experimental results showed that the performance of the differential evolution algorithm is sensitive to parameter setting, and the best setting was found to be problem dependent. The fuzzy adaptive differential evolution algorithm releases the user load of parameter setting and performs better than those using all fixedparameters. Differential evolution-based approaches are effective for training Gaussian radial basis function networks.