935 resultados para n(g) nitroarginine methyl ester
Resumo:
(i) Incistrans pairs of cyclic 1,3-dicarboxylic acid ethyl esters thecis-foms exhibit higher O-methylene proton (HA, HB) anisochrony than thetrans-forms; (ii) anisochrony, easily observed in certain decalin-10-carboxylic ethyl esters, ‘disappears’ on one of the rings attaining the possibility of transforming into a ‘twist’ form; (iii) in certain pairs of chiralsecethyl esters and theirtert-methylated analogues anisochrony is higher in the latter, contrary to expectation, while, in certain others, the reverse is observed. Attempted explanations are based on assessments whether H A and H B are or are not in highly different magnetic environments in confomers regarded as preferred. This subsumes the possibility thatXYZC-CO2H A H B Me chiral ethyl acetates differ fromXYZC-CH A H B Me ethanes because intervention by the carboxyl group insulates the prochiral centre and allows anisotropic effects to gain somewhat in importance among mechanisms that discriminate between H A and H B so long as rotamerpopulation inequalities persist. Background information on why rotamer-population inequalities will always persist and on a heuristic that attempts to generalize the effects ofXYZ inXYZC - CU AUB V is provided. Possible effects when connectivity exists between a pair amongX, Y, Z or when specific interactions occur betweenV andX, Y orZ are considered. An interpretation in terms of ‘increasing conformational mobility’ has been suggested for the observed increase in the rate of temperature-dependence of O-methylene anisochrony down a series of chiral ethyl esters.
Resumo:
C18H2204, orthorhombic, P212~21, a = 7.343 (4), b = 11.251 (4), c = 19.357 (4)A, Z = 4, Dr, ' = 1.20, D e = 1.254 g cm -3, F(000) = 648, p(Mo Ka) = 0.94 cm -~. X-ray intensity data were collected on a Nonius CAD-4 diffractometer and the structure was solved by direct methods. Full-matrix least-squares refinement gave R = 0.052 (R w = 0.045) for 1053 observed reflections. The stereochemical configuration at C(2) has been shown to be 2-exo-methyl-2-endo- (2,6-dimethoxyphenyl), i.e. (3) in contrast to the structure (2) assigned earlier based on its ~H NMR data.
Resumo:
Bactrocera jarvisi (Tryon) is a moderate pest fruit fly particularly in northern Australia where mango is its main commercial host. It was largely considered non-responsive to the known male lures. However, male B. jarvisi are attracted to the flowers of Bulbophyllum baileyi, Passiflora ligularis, Passiflora maliformis and Semecarpus australiensis and this paper describes an attempt to determine the attractive compounds in the latter two species through chemical analysis. At about the same time, zingerone was identified as a fruit fly attractant in the flowers of Bulbophyllum patens in Malaysia, and this led the author to speculate that it could be attracting B. jarvisi to the flowers of B. baileyi. Two long-term traps, each with lures containing 2 g of liquefied zingerone and 1 mL maldison EC were established at Speewah, west of Cairns, in November 2001 and retained until April 2007. Over five complete years, 68 897 flies were captured, of which 99.6% were male B. jarvisi. Annual peaks in activity occurred between mid-January and early February, when they averaged 1428.5 +/- 695.6 (mean +/- standard error) male B. jarvisi/trap/week. Very few B. jarvisi were caught between June and September. Among 12 other species of Bactrocera and Dacus attracted to zingerone were the previously non-lure responsive Bactrocera aglaiae, a new species Bactrocera speewahensis, and the rarely trapped Dacus secamoneae. Four separate trials were conducted over 8- to 19-week periods to compare the numbers and species of Bactrocera and Dacus caught by zingerone, raspberry ketone/cue-lure or methyl eugenol-baited traps. Overall, 27 different species of Bactrocera and Dacus were recorded. The zingerone-baited traps caught 97.799.3% male B. jarvisi and no methyl eugenol responsive flies. Significantly more Bactrocera neohumeralis or Bactrocera tryoni were attracted to raspberry ketone/cue-lure than to zingerone (P < 0.001). Zingerone and structurally related compounds should be tested more widely throughout the region.
The effects of host defence elicitors on betacyanin accumulation in Amaranthus mangostanus seedlings
Resumo:
The effect of elicitors associated with host defence on betacyanin accumulation in Amaranthus mangostanus seedlings was investigated. Under the conditions of the experiments, betacyanin accumulation was generally enhanced by light. Methyl jasmonate (MeJA) treatment increased betacyanin synthesis in a concentration-dependent response. Seedlings treated with ethylene as 5 mM Ethephon also had elevated levels of betacyanin. In contrast. salicylic acid (SA) and H2O2 treatments had no influence on betacyanin contents in light or dark. Combined MeJA with Ethephon or H2O2 had an additive effect on betacyanin accumulation in dark-grown seedlings. However, a decline was recorded in light-grown seedlings. Moreover, an antagonistic effect on betacyanin synthesis was found when MeJA and SA were added simultaneously. Our results indicate that betacyanin content in A. mangostanus seedlings can be upregulated by MeJA and ethylene. Both additive and antagonistic effects in regulating betacyanin synthesis in A. mangostanus seedlings were observed between MeJA and other elicitors. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
A new modified nucleoside 2-²-O-methyl-l-methyl adenosine has been found to be present in the tRNA of (eleusine coracana ) (ragi) seedlings. The sequence of the dinucleotide of which this modified nucleoside is a part suggests its presence in phenylalanine-tRNA. The structural implications of the presence of this new modification are discussed.
Resumo:
Different compositions of poly(methyl methacrylate-co-methyl acrylate) (PMMAMA), poly(methyl methacrylate-co-ethyl acrylate) (PMMAEA) and poly(methyl methacrylate-co-butyl acrylate) (PMMABA) copolymers were synthesized and characterized. The photocatalytic oxidative degradation of all these copolymers were studied in presence of two different catalysts namely Degussa P-25 and combustion synthesized titania using azobis-iso-butyronitrile and benzoyl peroxide as oxidizers. Gel permeation hromatography (GPC) was used to determine the molecular weight distribution of the samples as a function of time. The GPC chromatogram indicated that the photocatalytic oxidative degradation of all these copolymers proceeds by both random and chain end scission.Continuous distribution kinetics was used to develop a model for photocatalytic oxidative degradation considering both random and specific end scission. The degradation rate coefficients were determined by fitting the experimental data with the model. The degradation rate coefficients of the copolymers decreased with increase in the percentage of alkyl acrylate in the copolymer. This indicates that the photocatalytic oxidative stability of the copolymers increased with increasing percentage of alkyl acrylate. From the degradation rate coefficients, it was observed that the photocatalytic oxidative stability follows the order PMMABA > PMMAEA > PMMAMA. The thermal degradation of the copolymers was studied by using thermogravimetric analysis (TGA). The normalized weight loss and differential fractional weight loss profiles indicated that the thermal stability of the copolymer increases with an increase in the percentage of alkyl acrylate and the thermal stability of poly(methyl methacrylate-co-alkyl acrylate)s follows the order PMMAMA > PMMAEA > PMMABA. The observed contrast in the order of photostability and thermal stability of the copolymers was attributed to different mechanisms involved for the scission of polymer chain and formation of different products in both the processes.
Resumo:
Abstract is not available.
Resumo:
Empirical potential energy calculations have been carried out to determine the preferred conformations of penicillins and penicillin sulphones and their 1-oxa-1-dethia and 1-carba-1-dethia analogues. With the exception of 1-oxa-1-dethia penicillins, all the other compounds favour C2 and the C3 puckered conformations of their five-membered rings. Replacement of C2 methyl groups by hydrogen atoms as in bisnorpenicillin V or oxidation of sulphur in position 1 as in sulphones, makes the C3 puckered form much less favourable. Addition of an amino-acyl group at the C6 atom, however, makes the C3 puckered form more favoured in penicillin G or V and in 1-carba-1-dethia penicillins. Through the replacement of the sulphur atom at position 1 by an oxygen atom or by a -CH2 group increases the non-planarity of the lactam peptide bond, it significantly affects the relative disposition of the C3 carboxyl group with respect to the β-lactam ring. These conformational differences have been correlated with the biological activities of these compounds. The present study suggests that the conformation of the bicyclic ring system may be more important for initial binding with the crosslinking enzyme(s) involved in the biosynthesis of bacterial cell-wall peptidoglycan and that the mode of binding is influenced by the nature of the side-group at the C6 atom. These studies predict, in agreement with experimental results, that the 1-oxa-1-dethia penicillin nulceus is an inhibitor of penicillianses. The study also suggests that the stereospecificities of the crosslinking enzyme(s) and penicillinases are very similar with regard to the nature of the side-group at the 6 atom and the confirmation of the bicyclic ring system. However, the confirmational requirement for the bicyclic ring system appears to be more specific in the former enzyme than in the latter.
Resumo:
Cyclohexa-1, 4-dienes with appropriate substituents, obtained by birch reduction of the substituted benzene, react directly with derivatives of propiolic ester or aldchyde to yield aromatic polyketides. The following compounds have been synthesized; mycophenolic acid, nidulol methyl other, the root growth hormone 3, 5-dihydroxy-2-formyl-4-mythyl-benzoic acid, antibiotic DB 2073, the macrocyclic lactones lasiodiplodin and dihydrozearalenone and the biphenyl derivatives alternario and altenusin. Polyketide anthraquinones can be made from naphthoquinone precursors.
Resumo:
Bactrocera cucumis (French 1907), the ‘cucumber fruit fly’, is a horticultural pest in Australia that primarily infests cucurbits and has also been recorded from tomatoes, papaw and several other hosts. It does not respond to known male lures, cue-lure and methyl eugenol, making monitoring and control difficult. A cucumber volatile blend lure was recently developed in Hawaii and found to be an effective female-biased attractant for the melon fly B. cucurbitae. This lure was field tested in north Queensland, Australia in McPhail traps in comparison with orange ammonia, Cera Trap® and a control, and was found to more consistently trap B. cucumis than the other lures. B. cucumis were caught at 41% of the cucumber volatile lure trap clearances, compared with 27% of the orange ammonia, 18% of the Cera Trap and 16% of the control trap clearances. The cucumber volatile lure was more attractive to B. cucumis in low population densities and also trapped B. cucumis earlier on average than the other lures. Data analysed from the site with highest trap catches (Spring Creek) showed that the cucumber volatile lure caught significantly more B. cucumis than the other traps in four of the 11 trap clearance periods, and for the remaining clearances, no other trap type caught significantly more flies than the cucumber volatile lure. The cucumber volatile lure had a strong female-biased attraction but it was not significantly more female-biased than orange ammonia or Cera Trap. Cucumber volatile lure traps were cleaner to service resulting in better quality specimens than the orange ammonia trap or Cera Trap. These findings have potential implications for market access monitoring for determining pest freedom, and for biosecurity monitoring programmes in other countries that wish to detect B. cucumis early.
Resumo:
Grignard reaction of ethyl 3-(3,5-dimethoxyphenyl)-propionate (4) followed by cyclodehydration of the carbinol (5) with conc H2SO4 gave 4,6-dimethoxy-3,3-dimethylindane (6). Oxidation of the indane (6) with CrO3-pyridine complex in methylene chloride gave 4,6-dimethoxy-3,3-dimethylindan-1- one (1) in high yield. Conjugate addition of methyl magnesium iodide to methyl α-cyano-β-methyl-3,5-dimethoxycinnamate (11), prepared from 3,5-dimethoxyacetophenone (10) by Knoevenagel condensation, resulted in methyl 2-cyano-3-(3,5-dimethoxyphenyl)-3,3-dimethylpropionate (12). Refluxing the ester (12) with aq DMSO containing sodium chloride gave the corresponding nitrile (15) which underwent Höesch reaction to yield 5,7-dimethoxy-3,3-dimethylindan-1-one (2).
Resumo:
Chromolaena odorata (L.) King and Robinson (Siam weed) is a highly invasive plant and a high priority for control in north Queensland. It can be effectively treated using high-volume, groundbased herbicide spray equipment, but operational information shows that this control method becomes increasingly difficult in areas where vehicle access is prevented by rougher terrain. Low-volume, high-concentration herbicide applications have proven capable of causing high mortality in these remote situations. Two trials were undertaken between May 2010 and May 2012 to refine effective rates of aminopyralid/fluroxypyr, fluroxypyr and metsulfuron-methyl, only using low-volume, high-concentration applications on Siam weed. Fluroxypyr on its own was as effective as aminopyralid/fluroxypyr as both herbicides caused 95-100% mortality at overlapping rates containing 5 to 18.85 g a.i. L-1 of fluroxypyr. Metsulfuron-methyl caused 100% mortality when applied at 3 and 6 g a.i. L-1. Effective control was achieved with approximately 16 to 22 mL of the solutions per plant, so a 5 L mixture in a backpack could treat 170 to 310 adult plants. There are several options for treating Siam weed on the ground and the choice of methods reflects the area, plant density and accessibility of the infestation. Control information from Siam weed field crews shows that low volume, high concentration herbicide applications applied using a splatter gun are a more efficient method for controlling larger, denser remote infestations than physical removal. By identifying effective herbicides that are applied through low-volume equipment, these trials provide an additional and more efficient tool for controlling Siam weed in remote areas.
Resumo:
The Stockmayer-Fixman relation was used to evaluate the short range and long range interaction parameters for methyl methacrylate/acrylonitrile copolymers of 0,566 and 0,657 mole fraction of monomeric units of acrylonitrile in the solvents acetonitrile, 2-butanone, dimethyl formamide, and y-butyrolactone, at different temperatures (30, 45, and 60 “C). The values of KO were found to be lower than those of the parent homopolymers, and their values depend on both solvent and temperature. Even negative Ko-values were obtained, in cases in which the Mark Houwink exponent a is nearly unity. The values of the polymer-solvent interaction parameter, x, , are high and close to 0,5, indicating that these solvents are not good. The values of the excess interaction parameter, xAB, are negative and are not affected by temperature. The large extension of these copolymer chains, as exhibited by a and a;-values, can be understood in terms of unusual short range interactions only. Similar results were obtained for some cellulose derivatives.
Resumo:
Parthenium (Parthenium hysterophorus L.) is one of the most aggressive herbaceous weeds of the Asteraceae family. It is widely distributed, almost across the world and has become the most important invasive weed. Comprehensive information on interference and control of this devastating species is required to facilitate better management decisions. A broad review on the interference and management of this weed is presented here. Inspite of its non-tropical origin, parthenium grows quite successfully under a wide range of environmental conditions. It is spreading rapidly in Australia, Western Africa, Asia, and Caribbean countries, and has become a serious weed of pastures, wastelands, roadsides, railwaysides, water courses, and agricultural crops. The infestations of parthenium have been reported to reduce grain and forage yields by 40–90%. The spread of parthenium has been attributed to its allelopathic activity, strong competitiveness for soil moisture and nutrients, and its capability to exploit natural biodiversity. Allelochemicals released from parthenium has been reported to decrease germination and growth of agronomic crops, vegetables, trees, and many other weed species. Growth promoting effects of parthenium extracts at low concentrations have also been reported in certain crops. Many pre- and post-emergence herbicides have been evaluated for the control of parthenium in cropped and non-cropped areas. The most effective herbicides are clomazone, metribuzin, atrazine, glyphosate, metsulfuron methyl, butachlor, bentazone, dicamba, and metsulfuron methyl. Extracts, residues, and essential oils of many allelopathic herbs (Cassia, Amaranthus, and Xanthium species), grasses (Imperata and Desmostachya species), and trees (Eucalyptus, Azadirachta, Mangifera species, etc.) have demonstrated inhibitory activities on seed germination and seedling growth of parthenium. Metabolites of several fungi, e.g., Fusarium oxysporun and Fusarium monilifonne, exhibit bioherbicidal activity against seeds and seedlings of this weed. Intercropping, displacement by competitive plant species like Cassia species, bisset bluegrass, florgen blugress, buffelgrass, along with the use of biological control agents like Mexican beetle, seed-feeding and stem-boring weevils, stem-galling and leaf-mining moth, and sap-feeding plant hopper, have been reported as possible strategies for the management of parthenium. An appropriate integration of these approaches could help minimize spread of parthenium and provide sustainable weed management with reduced environmental concerns.
Resumo:
Digital image