907 resultados para lowland forests
Resumo:
Shows cadastral and topographic data (land tracts with proprietors' names) in unurbanized areas.
Resumo:
RBC donor (copy 2): Ernest Haywood Collection.
Resumo:
Dissertação de Mestrado Integrado em Medicina Veterinária
Resumo:
2016
Resumo:
2016
Resumo:
2016
Resumo:
Introduction: Food availability and access are strongly affected by seasonality in Ethiopia. However, there are little data on seasonal variation in Infant and Young Child Feeding (IYCF) practices and malnutrition among 6-23 months old children in different agro-ecological zones of rural Ethiopia. Methods: Socio-demographic, anthropometry and IYCF indicators were assessed in post- and pre-harvest seasons among children aged 6–23 months of age randomly selected from rural villages of lowland and midland agro-ecological zones. Results: Child stunting and underweight increased from prevalence of 39.8% and 26.9% in post-harvest to 46.0% and 31.8% in pre-harvest seasons, respectively. The biggest increase in prevalence of stunting and underweight between post- and pre-harvest seasons was noted in the midland zone. Wasting decreased from 11.6% post-harvest to 8.5% pre-harvest, with the biggest decline recorded in the lowland zone. Minimum meal frequency, minimum acceptable diet and poor dietary diversity increased considerably in pre-harvest compared to post-harvest season in the lowland zone. Feeding practices and maternal age were predictors of wasting, while women’s dietary diversity and children age was predictor of child dietary diversity in both seasons. Conclusion: There is seasonal variation in malnutrition and IYCF practices among children 6-23 months of age with more pronounced effect in midland agro-ecological zone. A major contributing factor for child malnutrition may be poor feeding practices. Health information strategies focused on both IYCF practices and dietary diversity of mothers could be a sensible approach to reduce the burden of child malnutrition in rural Ethiopia.
Resumo:
The seasonal climate drivers of the carbon cy- cle in tropical forests remain poorly known, although these forests account for more carbon assimilation and storage than any other terrestrial ecosystem. Based on a unique combina- tion of seasonal pan-tropical data sets from 89 experimental sites (68 include aboveground wood productivity measure- ments and 35 litter productivity measurements), their asso- ciated canopy photosynthetic capacity (enhanced vegetation index, EVI) and climate, we ask how carbon assimilation and aboveground allocation are related to climate seasonal- ity in tropical forests and how they interact in the seasonal carbon cycle. We found that canopy photosynthetic capacity seasonality responds positively to precipitation when rain- fall is < 2000 mm yr-1 (water-limited forests) and to radia- tion otherwise (light-limited forests). On the other hand, in- dependent of climate limitations, wood productivity and lit- terfall are driven by seasonal variation in precipitation and evapotranspiration, respectively. Consequently, light-limited forests present an asynchronism between canopy photosyn- thetic capacity and wood productivity. First-order control by precipitation likely indicates a decrease in tropical forest pro- ductivity in a drier climate in water-limited forest, and in cur- rent light-limited forest with future rainfall < 2000 mm yr-1.
Resumo:
Background: Managed forests are a major component of tropical landscapes. Production forests as designated by national forest services cover up to 400 million ha, i.e. half of the forested area in the humid tropics. Forest management thus plays a major role in the global carbon budget, but with a lack of unified method to estimate carbon fluxes from tropical managed forests. In this study we propose a new time- and spatially-explicit methodology to estimate the above-ground carbon budget of selective logging at regional scale. Results: The yearly balance of a logging unit, i.e. the elementary management unit of a forest estate, is modelled by aggregating three sub-models encompassing (i) emissions from extracted wood, (ii) emissions from logging damage and deforested areas and (iii) carbon storage from post-logging recovery. Models are parametrised and uncertainties are propagated through a MCMC algorithm. As a case study, we used 38 years of National Forest Inventories in French Guiana, northeastern Amazonia, to estimate the above-ground carbon balance (i.e. the net carbon exchange with the atmosphere) of selectively logged forests. Over this period, the net carbon balance of selective logging in the French Guianan Permanent Forest Estate is estimated to be comprised between 0.12 and 1.33 Tg C, with a median value of 0.64 Tg C. Uncertainties over the model could be diminished by improving the accuracy of both logging damage and large woody necromass decay submodels. Conclusions: We propose an innovating carbon accounting framework relying upon basic logging statistics. This flexible tool allows carbon budget of tropical managed forests to be estimated in a wide range of tropical regions
Resumo:
Knowledge of particle emission characteristics associated with forest fires and in general, biomass burning, is becoming increasingly important due to the impact of these emissions on human health. Of particular importance is developing a better understanding of the size distribution of particles generated from forest combustion under different environmental conditions, as well as provision of emission factors for different particle size ranges. This study was aimed at quantifying particle emission factors from four types of wood found in South East Queensland forests: Spotted Gum (Corymbia citriodora), Red Gum (Eucalypt tereticornis), Blood Gum (Eucalypt intermedia), and Iron bark (Eucalypt decorticans); under controlled laboratory conditions. The experimental set up included a modified commercial stove connected to a dilution system designed for the conditions of the study. Measurements of particle number size distribution and concentration resulting from the burning of woods with a relatively homogenous moisture content (in the range of 15 to 26 %) and for different rates of burning were performed using a TSI Scanning Mobility Particle Sizer (SMPS) in the size range from 10 to 600 nm and a TSI Dust Trak for PM2.5. The results of the study in terms of the relationship between particle number size distribution and different condition of burning for different species show that particle number emission factors and PM2.5 mass emission factors depend on the type of wood and the burning rate; fast burning or slow burning. The average particle number emission factors for fast burning conditions are in the range of 3.3 x 1015 to 5.7 x 1015 particles/kg, and for PM2.5 are in the range of 139 to 217 mg/kg.
Resumo:
Although timber plantations and forests are classified as forms of agricultural production, the ownership of this land classification is not limited to rural producers. Timber plantations and forests are now regarded as a long-term investment with both institutional and absentee owners. While the NCREIF property indices have been the benchmarks for the measurement of the performance of the commercial property market in the UK, for many years the IPD timberland index has recently emerged as the U.K. forest and timberland performance indicator. The IPD Forest index incorporates 126 properties over five regions in the U.K. This paper will utilise the IPD Forestry Index to examine the performance of U.K. timber plantations and forests over the period 1981-2004. In particular, issues to be critically assessed include plantation and forest performance analysis, comparative investment analysis, and the role of plantations and forests in investment portfolios, the risk reduction and portfolio benefits of plantations and forests in mixed-asset portfolios and the strategic investment significance of U.K. timberlands.
Resumo:
Although timber plantations and forests are classified as forms of agricultural production, the ownership of this land classification is not limited to rural producers. Timber plantations and forests are now regarded as a long-term investment with both institutional and absentee owners. While the NCREIF property indices have been the benchmarks for the measurement of the performance of the commercial property market in the UK, for many years the IPD timberland index has recently emerged as the U.K. forest and timberland performance indicator. The IPD Forest index incorporates 126 properties over five regions in the U.K. This paper will utilise the IPD Forestry Index to examine the performance of U.K. timber plantations and forests over the period 1981-2004. In particular, issues to be critically assessed include plantation and forest performance analysis, comparative investment analysis, and the role of plantations and forests in investment portfolios, the risk reduction and portfolio benefits of plantations and forests in mixed-asset portfolios and the strategic investment significance of U.K. timberlands.
Resumo:
Over the past ten years various residential property markets throughout Australia in general and NSW in particular have been subject to substantial natural disasters. These occurrences have included floods, bushfires and hailstorms. In extreme cases the actual rectification costs have been up to AUD$1.5 billion, which occurred with the severe hailstorm in Sydney in April 1999 and cyclone Tracey in Darwin in 1974. Natural disasters such as severe storms and hailstorms have tended to be very indiscriminate in relation to frequency and the actual location of damage, whereas the nature of bushfire and flooding tends to be more defined. Although these extreme natural disasters tend to be infrequent, occurrences of floods and bushfires in residential property areas are more frequent, particularly as urban sprawl encroaches closer to national Parks, State recreation Parks and State forests. Considerable work has been carried out on flood effects on property markets by Bell (1999), Donnelly (1988), McClusky and Rausser (2001), Skrantz and Strickland (1987) in the US, and Chou and Shih (2001) in Taiwan. Fibbens (1994), Lambley and Cordery (1991) and Eves (1999, 2001, 2002) have carried out studies in relation to the effect of flooding on residential property values in the Sydney region, including the tracking of flood prone property values over time. However, no similar rigorous research has been carried out in relation to the impact of bushfires on residential property markets in the Sydney region.
Resumo:
This paper reports the application of multicriteria decision making techniques, PROMETHEE and GAIA, and receptor models, PCA/APCS and PMF, to data from an air monitoring site located on the campus of Queensland University of Technology in Brisbane, Australia and operated by Queensland Environmental Protection Agency (QEPA). The data consisted of the concentrations of 21 chemical species and meteorological data collected between 1995 and 2003. PROMETHEE/GAIA separated the samples into those collected when leaded and unleaded petrol were used to power vehicles in the region. The number and source profiles of the factors obtained from PCA/APCS and PMF analyses were compared. There are noticeable differences in the outcomes possibly because of the non-negative constraints imposed on the PMF analysis. While PCA/APCS identified 6 sources, PMF reduced the data to 9 factors. Each factor had distinctive compositions that suggested that motor vehicle emissions, controlled burning of forests, secondary sulphate, sea salt and road dust/soil were the most important sources of fine particulate matter at the site. The most plausible locations of the sources were identified by combining the results obtained from the receptor models with meteorological data. The study demonstrated the potential benefits of combining results from multi-criteria decision making analysis with those from receptor models in order to gain insights into information that could enhance the development of air pollution control measures.