914 resultados para human monoclonal-antibody
Resumo:
meso-Tetra(N-methyl-4-pyridyl) porphine tetra tosylate (TMP) is a photosensitizer that can be used in photodynamic therapy (PDT) to induce cell death through generation of reactive oxygen species in targeted tumor cells. However, TMP is highly hydrophilic, and therefore, its ability to accumulate intracellularly is limited. In this study, a strategy to improve TMP uptake into cells has been investigated by encapsulating the compound in a hydrogel-based chitosan/alginate nanoparticle formulation. Nanoparticles of 560 nm in diameter entrapping 9.1 µg of TMP per mg of formulation were produced and examined in cell-based assays. These particles were endocytosed into human colorectal carcinoma HCT116 cells and elicited a more potent photocytotoxic effect than free drug. Antibodies targeting death receptor 5 (DR5), a cell surface apoptosis-inducing receptor up-regulated in various types of cancer and found on HCT116 cells, were then conjugated onto the particles. The conjugated antibodies further enhanced uptake and cytotoxic potency of the nanoparticle. Taken together, these results show that antibody-conjugated chitosan/alginate nanoparticles significantly enhanced the therapeutic effectiveness of entrapped TMP. This novel approach provides a strategy for providing targeted site-specific delivery of TMP and other photosensitizer drugs to treat colorectal tumors using PDT.
Resumo:
Rationale: Mesenchymal stem cells secrete paracrine factors that can regulate lung permeability and decrease inflammation, making it a potentially attractive therapy for acute lung injury. However, concerns exist whether mesenchymal stem cells' immunomodulatory properties may have detrimental effects if targeted toward infectious causes of lung injury. Objectives: Therefore, we tested the effect of mesenchymal stem cells on lung fluid balance, acute inflammation, and bacterial clearance. Methods: We developed an Escherichia coli pneumonia model in our ex vivo perfused human lung to test the therapeutic effects of mesenchymal stem cells on bacterial-induced acute lung injury. Measurements and Main Results: Clinical-grade human mesenchymal stem cells restored alveolar fluid clearance to a normal level, decreased inflammation, and were associated with increased bacterial killing and reduced bacteremia, in part through increased alveolar macrophage phagocytosis and secretion of antimicrobial factors. Keratinocyte growth factor, a soluble factor secreted by mesenchymal stem cells, duplicated most of the antimicrobial effects. In subsequent in vitro studies, we discovered that human monocytes expressed the keratinocyte growth factor receptor, and that keratinocyte growth factor decreased apoptosis of human monocytes through AKT phosphorylation, an effect that increased bacterial clearance. Inhibition of keratinocyte growth factor by a neutralizing antibody reduced the antimicrobial effects of mesenchymal stem cells in the ex vivo perfused human lung and monocytes grown in vitro injured with E. coli bacteria. Conclusions: In E. coli-injured human lungs, mesenchymal stem cells restored alveolar fluid clearance, reduced inflammation, and exerted antimicrobial activity, in part through keratinocyte growth factor secretion.
Resumo:
Recent in vivo studies indicate that mesenchymal stem cells (MSCs) may have beneficial effects in the treatment of sepsis induced by bacterial infection. Administration of MSCs in these studies improved survival and enhanced bacterial clearance. The primary objective of this study was to test the hypothesis that human MSCs possessed intrinsic antimicrobial properties. We studied the effect of human MSCs derived from bone marrow on the bacterial growth of Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus) bacteria. MSCs as well as their conditioned medium (CM) demonstrated marked inhibition of bacterial growth in comparison with control medium or normal human lung fibroblasts (NHLF). Analysis of expression of major antimicrobial peptides indicated that one of the factors responsible for the antimicrobial activity of MSC CM against Gram-negative bacteria was the human cathelicidin antimicrobial peptide, hCAP-18/LL-37. Both m-RNA and protein expression data showed that the expression of LL-37 in MSCs increased after bacterial challenge. Using an in vivo mouse model of E. coli pneumonia, intratracheal administration of MSCs reduced bacterial growth (in colony-forming unit) in the lung homogenates and in the bronchoalveolar lavage (BAL) fluid, and administration of MSCs simultaneously with a neutralizing antibody to LL-37 resulted in a decrease in bacterial clearance. In addition, the BAL itself from MSC-treated mice had a greater antimicrobial activity in comparison with the BAL of phosphate buffered saline (PBS)-treated mice. Human bone marrow-derived MSCs possess direct antimicrobial activity, which is mediated in part by the secretion of human cathelicidin hCAP-18/ LL-37.
Resumo:
Introduction: In this study, colloidal gold nanoparticle and precipitation of an insoluble product formed by HRP-biocatalyzed oxidation of 3,3'-diaminobenzidine (DAB) in the presence of H2O2 were used to enhance the signal obtained from the surface plasmon resonance biosensor.
Methods: The colloidal gold nanoparticle was synthesized as described by Turkevitch et al., and their surface was firstly functionalized with HS(CH2)11(OCH2CH2)3COOH (OEG3¬-COOH) by self assembling technique. Thereafter, those OEG3-COOH functionalized nanoparticles were covalently conjugated with horseradish peroxidase (HRP) and anti-IgG antibody (specific to the Fc portion of all human IgG subclasses) to form an enzyme-immunogold complex. Characterization was performed by several methods: UV-Vis absorption, dynamic light scattering (DLS), transmission electron microscopy (TEM) and FTIR. The as-prepared enzyme-immunogold complex has been applied in enhancement of SPR immunoassay. A sensor chip used in the experiment was constructed by using 1:10 molar ratio of HS(CH2)11(OCH2CH2)6COOH and HS(CH2)11(OCH2CH2)3OH. The capture protein, GAD65 (autoantigen) which is recognized by anti-GAD antibody (autoantibody) in the sera of insulin-dependent diabetes mellitus patients, was immobilized onto the 1:10 surface via biotin-streptavidin interaction.
Results and conclusions: In the research, we reported the influences of gold nanoparticle and enzyme precipitation on the enhancement of SPR signal. Gold nanoparticle showed its enhancement as being consistent with other previous studies, while the enzyme precipitation using DAB substrate was applied for the first time and greatly amplified the SPR detection. As the results, anti-GAD antibody could be detected at pg/ml level which is far higher than that of commercial ELISA detection kit. This study indicates another way to enhance SPR measurement, and it is generally applicable to other SPR-based immunoassays.
Resumo:
Paralytic shellfish poisoning (PSP) is a potentially fatal human health condition caused by the consumption of shellfish containing high levels of PSP toxins. Toxin extraction from shellfish and from algal cultures for use as standards and analysis by alternative analytical monitoring methods to the mouse bioassay is extensive and laborious. This study investigated whether a selected MAb antibody could be coupled to a novel form of magnetic microsphere (hollow glass magnetic microspheres, brand name Ferrospheres-N) and whether these coated microspheres could be utilized in the extraction of low concentrations of the PSP toxin, STX, from potential extraction buffers and spiked mussel extracts. The feasibility of utilizing a mass of 25 mg of Ferrospheres-N, as a simple extraction procedure for STX from spiked sodium acetate buffer, spiked PBS buffer and spiked mussel extracts was determined. The effects of a range of toxin concentrations (20-300 ng/mL), incubation times and temperature on the capability of the immuno-capture of the STX from the spiked mussel extracts were investigated. Finally, the coated microspheres were tested to determine their efficiency at extracting PSP toxins from naturally contaminated mussel samples. Toxin recovery after each experiment was determined by HPLC analysis. This study on using a highly novel immunoaffinity based extraction procedure, using STX as a model, has indicated that it could be a convenient alternative to conventional extraction procedures used in toxin purification prior to sample analysis.
Resumo:
Using mice harbouring early Fasciola hepatica infections, six monoclonal antibodies were prepared against a tegumental antigen present in T1 granules and glycocalyx of flukes. Blocking tests indicated that all monoclonals bound the same T1 epitope (or epitopes in close proximity on the antigen molecule), but this was not the determinant recognized by sheep and cattle. Localization of antibody binding at light and electron microscope levels showed that T1-type antigen also occurred in metacercarial tegument and in glycocalyx of gut cells and excretory ducts in juvenile and adult flukes. This indicates that the natural host-antibody response to F. hepatica may be to one antigen early in the infection. Protein A-gold labelling of monoclonal treated fluke sections revealed that the epitope was probably a polypeptide, unmodified by glycosylation in Golgi bodies. When isolated by immunoadsorption and separated electrophoretically under reducing conditions T1-type antigen was found to consist of a polypeptide mol. wt. 50 000, possibly linked to smaller entities mol. wt. 25-40 000. Tissue-specific variations in the antigen molecule might be conferred by linkage of different polypeptides or carbohydrate side-chains to an antigenic core polypeptide. A component of T1-type antigen was found to have mol. wt. of 25 000, possibly resembling a polypeptide of mol. wt. 24 000 from Schistosoma mansoni tegument.
Resumo:
Human B cell colonies were grown from peripheral blood of 12 patients with systemic lupus erythematosus (SLE) and from 12 healthy control subjects. The SLE group showed a large increase (p less than 0.001) in the number of colony forming cells (CFC) present in peripheral blood as compared with controls. The CFC were of the pre-B cell type. There was also a loss of OKT8+ cell inhibition of B cell colony growth in the SLE group compared with control subjects.
Resumo:
As increasing incidences in the occurrence of cylindrospermopsin (CYN) appear, in addition to further research on its toxicological nature, improved rapid methods to detect this toxin are required. Antibody based assays are renowned for their ability to provide rapid, portable, simple to use tests. As yet however there are no publications outlining how an antibody to CYN can be produced. A range of chemical approaches was investigated to synthesise CYN immunogens for antibody production but failed to generate a response. Finally, a modified Mannich reaction for immunogen synthesis was employed to couple the toxin to two carrier proteins. Both protein conjugates were successfully used to raise both polyclonal and monoclonal antibodies of high sensitivity to CYN. These antibodies were characterised employing competitive indirect ELISA and an optical biosensor assay. By ELISA the sensitivity achieved ranged from 27 to 131. pg/mL and by SPR 4.4 to 11.1. ng/mL thus demonstrating that the selection of immunoassay platform is important for the detection level required by the end user for their application. Low cross-reactivity to the much less toxic metabolite deoxyCYN was observed. This is the first reported production of antibodies to this toxin. © 2013 Elsevier B.V.
Resumo:
Although there is currently no evidence of emerging strains of measles virus (MV) that can resist neutralization by the anti-MV antibodies present in vaccinees, certain mutations in circulating wt MV strains appear to reduce the efficacy of these antibodies. Moreover, it has been hypothesized that resistance to neutralization by such antibodies could allow MV to persist. In this study, we use a novel in vitro system to determine the molecular basis of MV's resistance to neutralization. We find that both wild-type and laboratory strain MV variants that escape neutralization by anti-MV polyclonal sera possess multiple mutations in their H, F, and M proteins. Cytometric analysis of cells expressing viral escape mutants possessing minimal mutations and their plasmid-expressed H, F, and M proteins indicates that immune resistance is due to particular mutations that can occur in any of these three proteins that affect at distance, rather than directly, the native conformation of the MV-H globular head and hence its epitopes. A high percentage of the escape mutants contain mutations found in cases of Subacute Sclerosing Panencephalitis (SSPE) and our results could potentially shed light on the pathogenesis of this rare fatal disease.
Resumo:
Background We analysed incidence, predictors, histological features and specific treatment options of anti-tumour necrosis factor alpha (TNF-alpha) antibody-induced psoriasiform skin lesions in patients with inflammatory bowel diseases (IBD).
Design Patients with IBD were prospectively screened for anti-TNF-induced psoriasiform skin lesions. Patients were genotyped for IL23R and IL12B variants. Skin lesions were examined for infiltrating Th1 and Th17 cells. Patients with severe lesions were treated with the anti-interleukin (IL)-12/IL-23 p40 antibody ustekinumab.
Results Among 434 anti-TNF-treated patients with IBD, 21 (4.8%) developed psoriasiform skin lesions. Multiple logistic regression revealed smoking (p=0.007; OR 4.24, 95% CI 1.55 to 13.60) and an increased body mass index (p=0.029; OR 1.12, 95% CI 1.01 to 1.24) as main predictors for these lesions. Nine patients with Crohn's disease and with severe psoriasiform lesions and/or anti-TNF antibody-induced alopecia were successfully treated with the anti-p40-IL-12/IL-23 antibody ustekinumab (response rate 100%). Skin lesions were histologically characterised by infiltrates of IL-17A/IL-22-secreting T helper 17 (Th17) cells and interferon (IFN)-gamma-secreting Th1 cells and IFN-alpha-expressing cells. IL-17A expression was significantly stronger in patients requiring ustekinumab than in patients responding to topical therapy (p=0.001). IL23R genotyping suggests disease-modifying effects of rs11209026 (p.Arg381Gln) and rs7530511 (p.Leu310Pro) in patients requiring ustekinumab.
Conclusions New onset psoriasiform skin lesions develop in nearly 5% of anti-TNF-treated patients with IBD. We identified smoking as a main risk factor for developing these lesions. Anti-TNF-induced psoriasiform skin lesions are characterised by Th17 and Th1 cell infiltrates. The number of IL-17A-expressing T cells correlates with the severity of skin lesions. Anti-IL-12/IL23 antibody therapy is a highly effective therapy for these lesions.
Resumo:
Leptospirosis is a globally important zoonotic infection caused by spirochaetes of the genus Leptospira. It is transmitted to humans by direct contact with infected animals or indirectly via contaminated water. It is mainly a problem of the resource-poor developing countries of the tropical and sub-tropical regions of the world but outbreaks due to an increase in travel and recreational activities have been reported in developed and more industrialized areas of the world. Current methods of diagnosis are costly, time-consuming and require the use of specialized laboratory equipment and personnel. The purpose of this paper is to report the validation of the 'Leptorapide®' test (Linnodee Ltd, Northern Ireland) for the diagnosis of human leptospirosis. It is a simple one-step latex agglutination assay performed using equal volumes of serum sample and antigen-bound latex beads. Evidence of leptospiral antibodies is determined within minutes. Agglutination is scored on a scale of 1-5 and the results interpreted using a score card provided with the kit. Validation has been performed with a large sample size obtained from individuals originating from various parts of the world including Brazil and India. The test has shown sensitivity and specificity values of 97·1% and 94·0%, respectively, relative to the microscopic agglutination test. The results demonstrate that Leptorapide offers a cost-effective and accurate alternative to the more historical methods of antibody detection.
Resumo:
BACKGROUND: The wingless-type MMTV integration site (Wnt) signaling is a group of signal transduction pathways. In canonical Wnt pathway, Wnt ligands bind to low-density lipoprotein receptor-related protein 5 or 6 (LRP5 or LRP6), resulting in phosphorylation and activation of the receptor. We hypothesize that canonical Wnt pathway plays a role in the retinal lesion of age-related macular degeneration (AMD), a leading cause of irreversible central visual loss in elderly.
METHODS: We examined LRP6 phosphorylation and Wnt signaling cascade in human retinal sections and plasma kallistatin, an endogenous inhibitor of the Wnt pathway in AMD patients and non-AMD subjects. We also used the Ccl2 (-/-) /Cx3cr1 (-/-) /rd8 and Ccl2 (-/-) /Cx3cr1 (gfp/gfp) mouse models with AMD-like retinal degeneration to further explore the involvement of Wnt signaling activation in the retinal lesions in those models and to preclinically evaluate the role of Wnt signaling suppression as a potential therapeutic option for AMD.
RESULTS: We found higher levels of LRP6 (a key Wnt signaling receptor) protein phosphorylation and transcripts of the Wnt pathway-targeted genes, as well as higher beta-catenin protein in AMD macula compared to controls. Kallistatin was decreased in the plasma of AMD patients. Retinal non-phosphorylated-β-catenin and phosphorylated-LRP6 were higher in Ccl2 (-/-) /Cx3cr1 (-/-) /rd8 mice than that in wild type. Intravitreal administration of an anti-LRP6 antibody slowed the progression of retinal lesions in Ccl2 (-/-) /Cx3cr1 (-/-) /rd8 and Ccl2 (-/-) /Cx3cr1 (gfp/gfp) mice. Electroretinography of treated eyes exhibited larger amplitudes compared to controls in both mouse models. A2E, a retinoid byproduct associated with AMD was lower in the treated eyes of Ccl2 (-/-) /Cx3cr1 (-/-) /rd8 mice. Anti-LRP6 also suppressed the expression of Tnf-α and Icam-1 in Ccl2 (-/-) /Cx3cr1 (-/-) /rd8 retinas.
CONCLUSIONS: Wnt signaling may be disturbed in AMD patients, which could contribute to the retinal inflammation and increased A2E levels found in AMD. Aberrant activation of canonical Wnt signaling might also contribute to the focal retinal degenerative lesions of mouse models with Ccl2 and Cx3cr1 deficiency, and intravitreal administration of anti-LRP6 antibody could be beneficial by deactivating the canonical Wnt pathway.
Resumo:
Introduction: Accumulating evidence supports a role for odontoblasts in initiating tooth pain, however direct ionic mechanisms underlying dentine nociceptive function remain unclear. The transient receptor potential (TRP) ion channels are directly related to cellular mechanisms of nociception and thermo-sensitive function but their expression by human odontoblasts remains to be determined. Objectives: To investigate the expression and functionality of the thermo-sensitive TRP channels TRPV1, TRPV4, TRPM8 and TRPA1 in human odontoblasts. Methods: Human odontoblasts were derived from dental pulp of immature permanent third molars by explant method. Cell lysates of odontoblasts were subject to SDS- polyacrylamide gel electrophoresis and proteins were blotted onto nitrocellulose membranes. Blots were probed with primary antibodies to TRPA1, TRPM8, TRPV4 and TRPV1. Detection of bound primary antibodies was achieved using appropriate anti-species antibody conjugates and chemiluminescent substrates. Functionality of the channels was determined with Ca2+ microfluorimetry, where cells grown in cover slips and incubated with Fura 2AM prior to stimulation with capsaicin (TRPV1 agonist), 4 alpha-phorbol 12,13-didecanoate (4áPDD) (TRPV4 agonist), icilin (TRPA1 agonist) and menthol (TRPM8 agonist). Emitted fluorescence was measured and the fluorescence ratio (R) was calculated as F340/F380 to determine the level of [Ca2+]i. Results: Western blotting confirmed the molecular localisation of thermo-sensitive TRP channels in human odontoblasts. Functionality assays revealed increase in [Ca2+]i in response to capsacin, icillin, methanol and 4áPDD indicating functional expression of TRPV1, TRPA1, TRPM8 and TRPV4 respectively. Conclusions: Functional expression of thermo-sensitive TRP channels in human odontoblasts may indicate a crucial role for odontoblasts in thermally induced dental pain. (Supported by a Research Grant from the Royal College of Surgeons of Edinburgh)
Resumo:
Substance P (SP) is a member of the structurally related family of neuropeptides known as the tachykinins. In addition to neurotransmitter roles, the tachykinins are also known to modulate local inflammation which depends on signalling between the neuropeptide molecules and target cells and tissues. SP mediates its effects through a specific receptor, known as the substance P receptor or the neurokinin 1 (NK-1) receptor. The NK-1 receptor is a G-protein associated integral membrane protein and although it has been studied in a wide range of tissues, to date there has been no published data on the localisation of the NK-1 receptor in human gingival tissue. Objective: The aim of this study was to examine the distribution of the NK-1 receptor in human gingival tissue using immunocytochemistry. Method: Gingival tissue was obtained from patients undergoing periodontal surgery. Tissue was fixed in paraformaldehyde and embedded in wax for sectioning. Sections were dewaxed in xylene and then rehydrated in alcohols and phosphate buffered saline. Rehydrated sections were probed with rabbit polyclonal antibody to human NK-1 receptor which was subsequently detected using anti-rabbit horseradish peroxidase conjugate and diaminobenzidine as substrate. Results: Immunocytochemistry revealed that the NK-1 receptor was distributed along nerve fibres and blood vessel endothelial cells, suggesting these areas are main targets for the actions of SP via the NK-1 receptor. Conclusion: This is the first immunocytochemical report of NK-1 receptors in human gingival tissue and provides evidence for possible NK-1 mediated biological effects of SP in human gingival tissue from periodontitis patients.
Resumo:
Neuropeptide Y (NPY) is a 36 amino acid peptide that is abundantly expressed in both the central and peripheral nervous systems. NPY has previously been shown to be present in human dental pulp although its exact role in pulpal health and disease remains to be fully elucidated. In addition to serving a neurotransmitter role, NPY may also have a role in modulating the pulpal response to injury and inflammation. Indeed NPY is known to be a potent vasoconstrictor in a range of tissues. Recent work by our research group has demonstrated changes in sensory neuropeptide levels measured by radioimmunoassay (RIA) in healthy and carious teeth. In addition to elevated levels of sensory neuropeptides, it is also possible that the carious process is associated with increased levels of autonomic neuropeptides such as NPY. Objectives: The aim of the present study was to undertake a comprehensive quantitative RIA analysis of NPY expression in human dental pulps from carious and non-carious teeth. Methods: A total of 22 non-carious and 46 carious teeth were included in the study. NPY was measured in all samples using RIA. Briefly, the RIA system consisted of a total volume of 400 ul, comprising 100 ul anti-NPY antibody (Peninsula Laboratories), 200 ul human NPY synthetic standard or pulp sample, and 100 ul of 125I-labelled NPY as radioactive tracer. Results: The mean concentration of NPY in non-carious teeth was found to be 4.28 ng/g (4.34 SD) compared to 9.57 ng/g (9.39 SD) in carious teeth. Using ANOVA the difference in NPY levels between the non-carious group and the carious group was found to be statistically significant (p= 0.003). Conclusion: The significant increase in the levels of NPY in carious dental pulps reported in this study provides evidence for a role for NPY in the pulpal response to caries.