964 resultados para graphics processing units
Resumo:
The temporoammonic (TA) pathway is the direct, monosynaptic projection from layer III of entorhinal cortex to the distal dendritic region of area CA1 of the hippo campus. Although this pathway has been implicated in various functions, such as memory encoding and retrieval, spatial navigation, generation of oscillatory activity, and control of hippocampal excitability, the details of its physiology are not well understood. In this thesis, I examine the contribution of the TA pathway to hippocampal processing. I find that, as has been previously reported, the TA pathway includes both excitatory, glutamatergic components and inhibitory, GABAergic components. Several new discoveries are reported in this thesis. I show that the TA pathway is subject to forms of short-term activity-dependent regulation, including paired-pulse and frequency dependent plasticity, similar to other hippocampal pathways such as the Schaffer collateral (SC) input from CA3 to CA1. The TA pathway provides a strongly excitatory input to stratum radiatum giant cells of CA1. The excitatory component of the TA pathway undergoes a long-lasting decrease in synaptic strength following low-frequency stimulation in a manner partially dependent on the activation of NMDA receptors. High frequency activation of the TA pathway recruits a feedforward inhibition that can prevent CA1 pyramidal cells from spiking in response to SC input; this spike-blocking effect shows that the TA pathway can act to regulate information flow through the hippocampal trisynaptic pathway.
Resumo:
As borne out by everyday social experience, social cognition is highly dependent on context, modulated by a host of factors that arise from the social environment in which we live. While streamlined laboratory research provides excellent experimental control, it can be limited to telling us about the capabilities of the brain under artificial conditions, rather than elucidating the processes that come into play in the real world. Consideration of the impact of ecologically valid contextual cues on social cognition will improve the generalizability of social neuroscience findings also to pathology, e.g., to psychiatric illnesses. To help bridge between laboratory research and social cognition as we experience it in the real world, this thesis investigates three themes: (1) increasing the naturalness of stimuli with richer contextual cues, (2) the potentially special contextual case of social cognition when two people interact directly, and (3) a third theme of experimental believability, which runs in parallel to the first two themes. Focusing on the first two themes, in work with two patient populations, we explore neural contributions to two topics in social cognition. First, we document a basic approach bias in rare patients with bilateral lesions of the amygdala. This finding is then related to the contextual factor of ambiguity, and further investigated together with other contextual cues in a sample of healthy individuals tested over the internet, finally yielding a hierarchical decision tree for social threat evaluation. Second, we demonstrate that neural processing of eye gaze in brain structures related to face, gaze, and social processing is differently modulated by the direct presence of another live person. This question is investigated using fMRI in people with autism and controls. Across a range of topics, we demonstrate that two themes of ecological validity — integration of naturalistic contextual cues, and social interaction — influence social cognition, that particular brain structures mediate this processing, and that it will be crucial to study interaction in order to understand disorders of social interaction such as autism.
Resumo:
Intrinsically fuzzy morphological erosion and dilation are extended to a total of eight operations that have been formulated in terms of a single morphological operation--biased dilation. Based on the spatial coding of a fuzzy variable, a bidirectional projection concept is proposed. Thus, fuzzy logic operations, arithmetic operations, gray-scale dilation, and erosion for the extended intrinsically fuzzy morphological operations can be included in a unified algorithm with only biased dilation and fuzzy logic operations. To execute this image algebra approach we present a cellular two-layer processing architecture that consists of a biased dilation processor and a fuzzy logic processor. (C) 1996 Optical Society of America
Resumo:
An ordered gray-scale erosion is suggested according to the definition of hit-miss transform. Instead of using three operations, two images, and two structuring elements, the developed operation requires only one operation and one structuring element, but with three gray-scale levels. Therefore, a union of the ordered gray-scale erosions with different structuring elements can constitute a simple image algebra to program any combined image processing function. An optical parallel ordered gray-scale erosion processor is developed based on the incoherent correlation in a single channel. Experimental results are also given for an edge detection and a pattern recognition. (C) 1998 Society of Photo-Optical Instrumentation Engineers. [S0091-3286(98)00306-7].
Resumo:
This book section analyses the role of fish processing factories in the process of co-management related to the LVFRP.
Resumo:
Several patients of P. J. Vogel who had undergone cerebral commissurotomy for the control of intractable epilepsy were tested on a variety of tasks to measure aspects of cerebral organization concerned with lateralization in hemispheric function. From tests involving identification of shapes it was inferred that in the absence of the neocortical commissures, the left hemisphere still has access to certain types of information from the ipsilateral field. The major hemisphere can still make crude differentiations between various left-field stimuli, but is unable to specify exact stimulus properties. Most of the time the major hemisphere, having access to some ipsilateral stimuli, dominated the minor hemisphere in control of the body.
Competition for control of the body between the hemispheres is seen most clearly in tests of minor hemisphere language competency, in which it was determined that though the minor hemisphere does possess some minimal ability to express language, the major hemisphere prevented its expression much of the time. The right hemisphere was superior to the left in tests of perceptual visualization, and the two hemispheres appeared to use different strategies in attempting to solve the problems, namely, analysis for the left hemisphere and synthesis for the right hemisphere.
Analysis of the patients' verbal and performance I.Q.'s, as well as observations made throughout testing, suggest that the corpus callosum plays a critical role in activities that involve functions in which the minor hemisphere normally excels, that the motor expression of these functions may normally come through the major hemisphere by way of the corpus callosum.
Lateral specialization is thought to be an evolutionary adaptation which overcame problems of a functional antagonism between the abilities normally associated with the two hemispheres. The tests of perception suggested that this function lateralized into the mute hemisphere because of an active counteraction by language. This latter idea was confirmed by the finding that left-handers, in whom there is likely to be bilateral language centers, are greatly deficient on tests of perception.
Resumo:
Let F = Ǫ(ζ + ζ –1) be the maximal real subfield of the cyclotomic field Ǫ(ζ) where ζ is a primitive qth root of unity and q is an odd rational prime. The numbers u1=-1, uk=(ζk-ζ-k)/(ζ-ζ-1), k=2,…,p, p=(q-1)/2, are units in F and are called the cyclotomic units. In this thesis the sign distribution of the conjugates in F of the cyclotomic units is studied.
Let G(F/Ǫ) denote the Galoi's group of F over Ǫ, and let V denote the units in F. For each σϵ G(F/Ǫ) and μϵV define a mapping sgnσ: V→GF(2) by sgnσ(μ) = 1 iff σ(μ) ˂ 0 and sgnσ(μ) = 0 iff σ(μ) ˃ 0. Let {σ1, ... , σp} be a fixed ordering of G(F/Ǫ). The matrix Mq=(sgnσj(vi) ) , i, j = 1, ... , p is called the matrix of cyclotomic signatures. The rank of this matrix determines the sign distribution of the conjugates of the cyclotomic units. The matrix of cyclotomic signatures is associated with an ideal in the ring GF(2) [x] / (xp+ 1) in such a way that the rank of the matrix equals the GF(2)-dimension of the ideal. It is shown that if p = (q-1)/ 2 is a prime and if 2 is a primitive root mod p, then Mq is non-singular. Also let p be arbitrary, let ℓ be a primitive root mod q and let L = {i | 0 ≤ i ≤ p-1, the least positive residue of defined by ℓi mod q is greater than p}. Let Hq(x) ϵ GF(2)[x] be defined by Hq(x) = g. c. d. ((Σ xi/I ϵ L) (x+1) + 1, xp + 1). It is shown that the rank of Mq equals the difference p - degree Hq(x).
Further results are obtained by using the reciprocity theorem of class field theory. The reciprocity maps for a certain abelian extension of F and for the infinite primes in F are associated with the signs of conjugates. The product formula for the reciprocity maps is used to associate the signs of conjugates with the reciprocity maps at the primes which lie above (2). The case when (2) is a prime in F is studied in detail. Let T denote the group of totally positive units in F. Let U be the group generated by the cyclotomic units. Assume that (2) is a prime in F and that p is odd. Let F(2) denote the completion of F at (2) and let V(2) denote the units in F(2). The following statements are shown to be equivalent. 1) The matrix of cyclotomic signatures is non-singular. 2) U∩T = U2. 3) U∩F2(2) = U2. 4) V(2)/ V(2)2 = ˂v1 V(2)2˃ ʘ…ʘ˂vp V(2)2˃ ʘ ˂3V(2)2˃.
The rank of Mq was computed for 5≤q≤929 and the results appear in tables. On the basis of these results and additional calculations the following conjecture is made: If q and p = (q -1)/ 2 are both primes, then Mq is non-singular.