951 resultados para graphic designer


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study, Indian fisheries growth rate and fish consumption have been analyzed through GIS mapping. The analyses were based on the state-level fisheries data of India collected from the secondary sources. Accordingly, the paper contains one thematic map containing two layers. To achieve this, all the data have been brought into a tabular form through Microsoft Excel and then joined to Map Info Professional Version 8.0 GIS software with digitized map of India for further analysis to generate thematic maps. In this thematic map, the first Jayer represents the growth-rate of fish production for the period 1990-2004 and the second layer represents fish consumption for the year 2003. The thematic map represented in graphic form presents inland, marine and total growth rates, and also the rural and urban fish consumption at the state levels. This study will be useful to fish traders, planners, researchers and administrators in fisheries policy formulation for sustainable development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[GRAPHIC] Przewalskin B (1), a novel diterpenoid possessing a unique skeleton, was isolated from a Chinese medicinal plant Salvia przewalskii. Its structure and relative stereochemistry were elucidated by extensive NMR analysis and a single-crystal X-ray

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Life is full of difficult choices. Everyone has their own way of dealing with these, some effective, some not. The problem is particularly acute in engineering design because of the vast amount of information designers have to process. This paper deals with a subset of this set of problems: the subset of selecting materials and processes, and their links to the design of products. Even these, though, present many of the generic problems of choice, and the challenges in creating tools to assist the designer in making them. The key elements are those of classification, of indexing, of reaching decisions using incomplete data in many different formats, and of devising effective strategies for selection. This final element - that of selection strategies - poses particular challenges. Product design, as an example, is an intricate blend of the technical and (for want of a better word) the aesthetic. To meet these needs, a tool that allows selection by analysis, by analogy, by association and simply by 'browsing' is necessary. An example of such a tool, its successes and remaining challenges, will be described.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Current research into the process of engineering design is extending the use of computers towards the acquisition, representation and application of design process knowledge in addition to the existing storage and manipulation of product-based models of design objects. This is a difficult task because the design of mechanical systems is a complex, often unpredictable process involving ill-structured problem solving skills and large amounts of knowledge, some which may be of an incomplete and subjective nature. Design problems require the integration of a variety of modes of working such as numerical, graphical, algorithmic or heuristic and demand products through synthesis, analysis and evaluation activities.

This report presents the results of a feasibility study into the blackboard approach and discusses the development of an initial prototype system that will enable an alphanumeric design dialogue between a designer and an expert to be analysed in a formal way, thus providing real-life protocol data on which to base the blackboard message structures.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To support the development and analysis of engineering designs at the embodiment stage, designers work iteratively with representations of those designs as they consider the function and form of their constituent parts. Detailed descriptions of "what a machine does" usually include flows of forces and active principles within the technical system, and their localization within parts and across the interfaces between them. This means that a representation should assist a designer in considering form and function at the same time and at different levels of abstraction. This paper describes a design modelling approach that enables designers to break down a system architecture into its subsystems and parts, while assigning functions and flows to parts and the interfaces between them. In turn, this may reveal further requirements to fulfil functions in order to complete the design. The approach is implemented in a software tool which provides a uniform, computable language allowing the user to describe functions and flows as they are iteratively discovered, created and embodied. A database of parts allows the user to search for existing design solutions. The approach is illustrated through an example: modelling the complex mechanisms within a humanoid robot. Copyright © 2010 by ASME.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A large database of 115 triaxial, direct simple shear, and cyclic tests on 19 clays and silts is presented and analysed to develop an empirical framework for the prediction of the mobilization of the undrained shear strength, cu, of natural clays tested from an initially isotropic state of stress. The strain at half the peak undrained strength (γM=2) is used to normalize the shear strain data between mobilized strengths of 0.2cu and 0.8cu. A power law with an exponent of 0.6 is found to describe all the normalized data within a strain factor of 1.75 when a representative sample provides a value for γM=2. Multi-linear regression analysis shows that γM=2 is a function of cu, plasticity index Ip, and initial mean effective stress p′0. Of the 97 stress-strain curves for which cu, Ip, and p′0 were available, the observed values of γM=2 fell within a factor of three of the regression; this additional uncertainty should be acknowledged if a designer wished to limit immediate foundation settlements on the basis of an undrained strength profile and the plasticity index of the clay. The influence of stress history is also discussed. The application of these stress-strain relations to serviceability design calculations is portrayed through a worked example. The implications for geotechnical decision-making and codes of practice are considered.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Turbine design engineers have to ensure that film cooling can provide sufficient protection to turbine blades from the hot mainstream gas, while keeping the losses low. Film cooling hole design parameters include inclination angle (α), compound angle (β ), hole inlet geometry and hole exit geometry. The influence of these parameters on aerodynamic loss and net heat flux reduction is investigated, with loss being the primary focus. Low-speed flat plate experiments have been conducted at momentum flux ratios of IR = 0.16, 0.64 and 1.44. The film cooling aerodynamic mixing loss, generated by the mixing of mainstream and coolant, can be quantified using a three-dimensional analytical model that has been previously reported by the authors. The model suggests that for the same flow conditions, the aerodynamic mixing loss is the same for holes with different α and β but with the same angle between the mainstream and coolant flow directions (angle κ). This relationship is assessed through experiments by testing two sets of cylindrical holes with different α and β : one set with κ = 35°, another set with κ = 60°. The data confirm the stated relationship between α, β, κ and the aerodynamic mixing loss. The results show that the designer should minimise κ to obtain the lowest loss, but maximise β to achieve the best heat transfer performance. A suggestion on improving the loss model is also given. Five different hole geometries (α =35.0°, β =0°) were also tested: cylindrical hole, trenched hole, fan-shaped hole, D-Fan and SD-Fan. The D-Fan and the SD-Fan have similar hole exits to the fan-shaped hole but their hole inlets are laterally expanded. The external mixing loss and the loss generated inside the hole are compared. It was found that the D-Fan and the SD-Fan have the lowest loss. This is attributed to their laterally expanded hole inlets, which lead to significant reduction in the loss generated inside the holes. As a result, the loss of these geometries is ≈ 50 % of the loss of the fan-shaped hole at IR = 0.64 and 1.44. Copyright © 2011 by ASME.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Modern Engineering Design involves the deployment of many computational tools. Re- search on challenging real-world design problems is focused on developing improvements for the engineering design process through the integration and application of advanced com- putational search/optimization and analysis tools. Successful application of these methods generates vast quantities of data on potential optimum designs. To gain maximum value from the optimization process, designers need to visualise and interpret this information leading to better understanding of the complex and multimodal relations between param- eters, objectives and decision-making of multiple and strongly conflicting criteria. Initial work by the authors has identified that the Parallel Coordinates interactive visualisation method has considerable potential in this regard. This methodology involves significant levels of user-interaction, making the engineering designer central to the process, rather than the passive recipient of a deluge of pre-formatted information. In the present work we have applied and demonstrated this methodology in two differ- ent aerodynamic turbomachinery design cases; a detailed 3D shape design for compressor blades, and a preliminary mean-line design for the whole compressor core. The first case comprises 26 design parameters for the parameterisation of the blade geometry, and we analysed the data produced from a three-objective optimization study, thus describing a design space with 29 dimensions. The latter case comprises 45 design parameters and two objective functions, hence developing a design space with 47 dimensions. In both cases the dimensionality can be managed quite easily in Parallel Coordinates space, and most importantly, we are able to identify interesting and crucial aspects of the relationships between the design parameters and optimum level of the objective functions under con- sideration. These findings guide the human designer to find answers to questions that could not even be addressed before. In this way, understanding the design leads to more intelligent decision-making and design space exploration. © 2012 AIAA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We are developing a wind turbine blade optimisation package CoBOLDT (COmputa- tional Blade Optimisation and Load De ation Tool) for the optimisation of large horizontal- axis wind turbines. The core consists of the Multi-Objective Tabu Search (MOTS), which controls a spline parameterisation module, a fast geometry generation and a stationary Blade Element Momentum (BEM) code to optimise an initial wind turbine blade design. The objective functions we investigate are the Annual Energy Production (AEP) and the fl apwise blade root bending moment (MY0) for a stationary wind speed of 50 m/s. For this task we use nine parameters which define the blade chord, the blade twist (4 parameters each) and the blade radius. Throughout the optimisation a number of binary constraints are defined to limit the noise emission, to allow for transportation on land and to control the aerodynamic conditions during all phases of turbine operation. The test case shows that MOTS is capable to find enhanced designs very fast and eficiently and will provide a rich and well explored Pareto front for the designer to chose from. The optimised blade de- sign could improve the AEP of the initial blade by 5% with the same flapwise root bending moment or reduce MY0 by 7.5% with the original energy yield. Due to the fast runtime of order 10 seconds per design, a huge number of optimisation iterations is possible without the need for a large computing cluster. This also allows for increased design flexibility through the introduction of more parameters per blade function or parameterisation of the airfoils in future. © 2012 by Nordex Energy GmbH.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We are developing a wind turbine blade optimisation package CoBOLDT (COmputa- tional Blade Optimisation and Load Deation Tool) for the optimisation of large horizontal- axis wind turbines. The core consists of the Multi-Objective Tabu Search (MOTS), which controls a spline parameterisation module, a fast geometry generation and a stationary Blade Element Momentum (BEM) code to optimise an initial wind turbine blade design. The objective functions we investigate are the Annual Energy Production (AEP) and the apwise blade root bending moment (MY0) for a stationary wind speed of 50 m/s. For this task we use nine parameters which define the blade chord, the blade twist (4 parameters each) and the blade radius. Throughout the optimisation a number of binary constraints are defined to limit the noise emission, to allow for transportation on land and to control the aerodynamic conditions during all phases of turbine operation. The test case shows that MOTS is capable to find enhanced designs very fast and efficiently and will provide a rich and well explored Pareto front for the designer to chose from. The optimised blade de- sign could improve the AEP of the initial blade by 5% with the same apwise root bending moment or reduce MY0 by 7.5% with the original energy yield. Due to the fast runtime of order 10 seconds per design, a huge number of optimisation iterations is possible without the need for a large computing cluster. This also allows for increased design flexibility through the introduction of more parameters per blade function or parameterisation of the airfoils in future. © 2012 AIAA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This part of the book aims to convince a designer that inclusive design is a realistic goal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Turbine design engineers have to ensure that film cooling can provide sufficient protection to turbine blades from the hot mainstream gas, while keeping the losses low. Film cooling hole design parameters include inclination angle (a), compound angle (b), hole inlet geometry, and hole exit geometry. The influence of these parameters on aerodynamic loss and net heat flux reduction is investigated, with loss being the primary focus. Low-speed flat plate experiments have been conducted at momentum flux ratios of IR=0.16, 0.64, and 1.44. The film cooling aerodynamic mixing loss, generated by the mixing of mainstream and coolant, can be quantified using a three-dimensional analytical model that has been previously reported by the authors. The model suggests that for the same flow conditions, the aerodynamic mixing loss is the same for holes with different a and b but with the same angle between the mainstream and coolant flow directions (angle k). This relationship is assessed through experiments by testing two sets of cylindrical holes with different a and b: one set with k=35 deg, and another set with k=60 deg. The data confirm the stated relationship between α, β, k and the aerodynamic mixing loss. The results show that the designer should minimize k to obtain the lowest loss, but maximize b to achieve the best heat transfer performance. A suggestion on improving the loss model is also given. Five different hole geometries (α=35.0 deg, β=0 deg) were also tested: cylindrical hole, trenched hole, fan-shaped hole, D-Fan, and SD-Fan. The D-Fan and the SD-Fan have similar hole exits to the fan-shaped hole but their hole inlets are laterally expanded. The external mixing loss and the loss generated inside the hole are compared. It was found that the D-Fan and the SD-Fan have the lowest loss. This is attributed to their laterally expanded hole inlets, which lead to significant reduction in the loss generated inside the holes. As a result, the loss of these geometries is≈50% of the loss of the fan-shaped hole at IR=0.64 and 1.44. © 2013 by ASME.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A partially observable Markov decision process (POMDP) has been proposed as a dialog model that enables automatic optimization of the dialog policy and provides robustness to speech understanding errors. Various approximations allow such a model to be used for building real-world dialog systems. However, they require a large number of dialogs to train the dialog policy and hence they typically rely on the availability of a user simulator. They also require significant designer effort to hand-craft the policy representation. We investigate the use of Gaussian processes (GPs) in policy modeling to overcome these problems. We show that GP policy optimization can be implemented for a real world POMDP dialog manager, and in particular: 1) we examine different formulations of a GP policy to minimize variability in the learning process; 2) we find that the use of GP increases the learning rate by an order of magnitude thereby allowing learning by direct interaction with human users; and 3) we demonstrate that designer effort can be substantially reduced by basing the policy directly on the full belief space thereby avoiding ad hoc feature space modeling. Overall, the GP approach represents an important step forward towards fully automatic dialog policy optimization in real world systems. © 2013 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The control of NOX emissions by exhaust gas recirculation (EGR) is of widespread application. However, despite dramatic improvements in all aspects of engine control, the subtle mixing processes that determine the cylinder-to-cylinder distribution of the recirculated gas often results in a mal-distribution that is still an issue for the engine designer and calibrator. In this paper we demonstrate the application of a relatively straightforward technique for the measurement of the absolute and relative dilution quantity in both steady state and transient operation. This was achieved by the use of oxygen sensors based on standard UEGO (universal exhaust gas oxygen) sensors but packaged so as to give good frequency response (∼ 10 ms time constant) and be completely insensitivity to the sample pressure and temperature. Measurements can be made at almost any location of interest, for example exhaust and inlet manifolds as well as EGR path(s), with virtually no flow disturbance. At the same time, the measurements yield insights into air-path dynamics. We argue that "dilution", as indicated by the deviation of the oxygen concentration from that of air, is a more appropriate parameter than EGR rate in the context of NOX control, especially for diesel engines. Experimental results are presented for the EGR distribution in a current production light duty 4-cylinder diesel engine in which significant differences were found in the proportion of the recirculated gas that reached each cylinder. Even the individual inlet runners of the cylinders exhibited very different dilution rates - differences of nearly 50% were observed at some conditions. An application of such data may be in the improvement of calibration and validation of CFD and other modelling techniques. Copyright © 2014 SAE International.