909 resultados para fiber optics amplifiers
Resumo:
Background: Diminishing supplies of fossil fuels and oil spills are rousing to explore the alternative sources of energy that can be produced from non-food/feed-based substrates. Due to its abundance, sugarcane bagasse (SB) could be a model substrate for the second-generation biofuel cellulosic ethanol. However, the efficient bioconversion of SB remains a challenge for the commercial production of cellulosic ethanol. We hypothesized that oxalic-acid-mediated thermochemical pretreatment (OAFEX) would overcome the native recalcitrance of SB by enhancing the cellulase amenability toward the embedded cellulosic microfibrils. Results: OAFEX treatment revealed the solubilization of hemicellulose releasing sugars (12.56 g/l xylose and 1.85 g/l glucose), leaving cellulignin in an accessible form for enzymatic hydrolysis. The highest hydrolytic efficiency (66.51%) of cellulignin was achieved by enzymatic hydrolysis (Celluclast 1.5 L and Novozym 188). The ultrastructure characterization of SB using scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman spectroscopy, Fourier transform-near infrared spectroscopy (FT-NIR), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) revealed structural differences before and after OAFEX treatment with enzymatic hydrolysis. Furthermore, fermentation mediated by C. shehatae UFMG HM52.2 and S. cerevisiae 174 showed fuel ethanol production from detoxified acid (3.2 g/l, yield 0.353 g/g; 0.52 g/l, yield, 0.246 g/g) and enzymatic hydrolysates (4.83 g/l, yield, 0.28 g/g; 6.6 g/l, yield 0.46 g/g). Conclusions: OAFEX treatment revealed marked hemicellulose degradation, improving the cellulases ability to access the cellulignin and release fermentable sugars from the pretreated substrate. The ultrastructure of SB after OAFEX and enzymatic hydrolysis of cellulignin established thorough insights at the molecular level. © 2013 Chandel et al; licensee BioMed Central Ltd.
Resumo:
We propose an analog model for quantum gravity effects using nonlinear dielectrics. Fluctuations of the spacetime lightcone are expected in quantum gravity, leading to variations in the flight times of pulses. This effect can also arise in a nonlinear material. We propose a model in which fluctuations of a background electric field, such as that produced by a squeezed photon state, can cause fluctuations in the effective lightcone for probe pulses. This leads to a variation in flight times analogous to that in quantum gravity. We make some numerical estimates which suggest that the effect might be large enough to be observable. © 2012 Elsevier Inc.
Resumo:
The purpose of this study was to determine whether the aerobic training-induced fiber-type transition in different muscles is associated with alterations in NFAT isoforms gene expression. We hypothesized that the aerobic training-induced fiber-type transition would be mediated by NFATc1-c3 isoforms without altering the CaN expression. Male Wistar rats (80 days old) were divided into a trained group (T; n=8) that underwent an 8-wk swimming endurance training program (5 days/week) and a control group (C; n=8). After the experimental period, the animals were sacrificed, and the soleus (SOL) and plantaris (PL) muscles were collected for morphometrical, histochemical and molecular analyses. Aerobic training induced a type I-to-type IIA fiber transition in the SOL muscle and a type IIB-to-type IIA fiber transition in the PL muscle, which were concomitant with a significant (p<0.05) increase in NFATc1-c3 gene expression in both the SOL and PL muscles. In contrast, the expression levels of calcineurin (CaN) and NFATc4 remained unchanged. Therefore, our results showed that fiber type switching induced by aerobic training is mediated by NFATc1-c3 isoforms without altering the CaN expression. © Georg Thieme Verlag KG Stuttgart. New York.
Resumo:
The effect of carbon fiber surface characteristics on flexural properties of structural composites is studied in this work. Two types of intermediate modulus carbon fibers were used: T800HB and IM7. Results revealed that higher mechanical properties are linked with higher interfacial adhesion. Morphologies and chemical compositions of commercial carbon fibers (CF) were characterized by Fourier Transformed Infra Red (FTIR) and Scanning Electronic Microscopy (SEM). Comparing the results, the T800HB apparently has more roughness, since the IM7 seems to be recovered for a polymeric film. On other hand, the IM7 one shows higher interactivity with epoxy resin system Cycom 890 RTM. Composites produced with Resin Transfer Molding (RTM) were tested on a flexural trial. Interfacial adhesion difference was showed with SEM and Dynamic Mechanical Analyses (DMA), justifying the higher flexural behavior of composites made with IM7 fibers. © 2013 Elsevier B.V. All rights reserved.
Resumo:
In order to investigate how environmental degradation affects the mechanical and thermal performance of polyetherimide/carbon fiber laminates, in this work different weathering were conducted. Additionally, dynamic mechanical analysis, interlaminar shear strength tests and non-destructive inspections were performed on this composite before and after being submitted to hygrothermal, UV radiation and thermal shock weathering. According to our results, hygrothermally aged samples had their glass transition temperature and elastic and storage moduli reduced by plasticization effect. Photooxidation, due to UV radiation exposure, occurred only on the surface of the laminates. Thermal shock induced a reversible stress on the composite's interface region. The results revealed that the mechanical behavior can vary during weather exposure but since this variation is only subtle, this thermoplastic laminate can be considered for high-performance applications, such as aerospace. © The Author(s) 2013.
Resumo:
With the objective of evaluating the effects of N and K concentrations for melon plants, an experiment was carried out from July 1, 2011 to January 3, 2012 in Muzambinho city, Minas Gerais State, Brazil. The Bonus no. 2 was cultivated at the spacing of 1.1 × 0.4. The experimental design was a randomized complete block with three replications in a 4 × 4 factorial scheme with four N concentrations (8, 12, 16, and 20 mmol L-1) and four K concentrations (4, 6, 8, and 10 mmol L-1). The experimental plot constituted of eight plants. It was observed that the leaf levels of N and K, of N-NO3 and of K, and the electrical conductivity (CE) of the substrate increased with the increment of N and K in the nutrients' solution. Substratum pH, in general, was reduced with increments in N concentration and increased with increasing K concentrations in the nutrients' solution. Leaf area increased with increments in N concentration in the nutrients solution. Fertigation with solutions stronger in N (20 mmol L-1) and K (10 mmol L-1) resulted in higher masses for the first (968 g) and the second (951 g) fruits and crop yield (4,425 gm-2). © 2013 Luiz Augusto Gratieri et al.
Resumo:
The aim of this paper was to evaluate the effect of hybridizing glass and curaua fibers on the mechanical properties of their composites. These composites were produced by hot compression molding, with distinct overall fiber volume fraction, being either pure curaua fiber, pure glass fiber or hybrid. The mechanical characterization was performed by tensile, flexural, short beam, Iosipescu and also nondestructive testing. From the obtained results, it was observed that the tensile strength and modulus increased with glass fiber incorporation and for higher overall fiber volume fraction (%Vf). The short beam strength increased up to %Vf of 30 vol.%, evidencing a maximum in terms of overall fiber/matrix interface and composite quality. Hybridization has been successfully applied to vegetable/synthetic fiber reinforced polyester composites in a way that the various properties responded satisfactorily to the incorporation of a third component. © 2013 Published by Elsevier Ltd. All rights reserved.
Resumo:
The aim of this work was to determine ruminal degradation of neutral detergent fiber of grasses of the genus Cynodon, harvested at four cutting ages. It was used a randomized block design, with five treatments arranged in a split plot, the five evaluated genotypes: Tifton 85, Jiggs, Russel, Tifton 68 and Vaquero; were the plots and ages of cutting were the subplots: 28, 48, 63 and 79 days. By adding one day in the cutting age, there was a linear reduction in the effective degradability of neutral detergent fiber of blade and stem of 0.16 and 0.18%, respectively. The increase in the cutting age had a linear and positive influence on the undegradable neutral detergent fiber with daily increments for leaf and stem of 0.12 and 0.18%, respectively. At the 28 regrowth day, all genotypes showed higher content of potentially degradable insoluble fraction, effective degradability and lower undegradable fraction of the neutral detergent fiber of blade and stem in relation to other ages, in this way this interval is recommended for cutting management.
Resumo:
The objective of the present experiment was to compare the performance, egg quality and organ morphometrics of commercial layers submitted to alternative forced molting methods using dietary fibers. The experimental period included the phases of molting, rest, and second laying cycle (six periods of 28 days each). In the trial, 320 commercial Isa Brown layers with 72 weeks of age were distributed, according to a completely randomized experimental design into five treatments with eight replicates of eight birds each, totaling 40 experimental units. Molting was induced by feeding diets with the inclusion of alfalfa or soybean husks at 80% and 60% or feed fasting. Treatments were applied for 14 days. Performance and egg quality parameters were evaluated for the second laying cycle and organ morphometrics (liver, gizzard, proventriculus, reproductive apparatus) in two different slaughter dates. The obtained data were submitted to analysis of variance using the General Linear Model (GLM) procedure of SAS statistical package (SAS Institute, 2002). Alternative molting methods promoted similar performance and egg quality results after molting were similar to those obtained by the conventional fasting method. Feeding fiber produced the expected effects in terms of organ weight regression and recovery and may be used to induce molting in commercial layers.
Resumo:
The disposal of chemical waste and the precision of analyses of the neutral (NDF) and acid (ADF) detergent fiber contents were evaluated utilizing conventional (Van Soest) and alternative methods of analyses. The recovery of acetone promoted both economic and environmental gains, with a recovery rate of 84.12%. The precision of the analyses was not observed in most of the determinations with reutilization of chemical waste in all the analytical methods tested, in spite of promoting decrease in cost, time invested in the preparation of solutions and the disposal of chemical waste.
Resumo:
This study aimed at evaluating diets containing different fiber sources and two crude protein levels on the performance, egg quality, and nitrogen metabolism of commercial layers. In total, 392 48-wk-old Isa Brown layers were distributed according to a completely randomized experimental design in a 3x2+1 (control) factorial arrangement, resulting in seven treatments with seven replicates of eight birds each. Treatments consisted of three fiber feedstuffs (cottonseed hulls, soybean hulls, and rice hulls) and two dietary crude protein levels (12% and 16%). Cottonseed hulls associated with the high crude protein level (16%) resulted in the worst feed conversion ratio per dozen eggs. Diets with 16% crude protein resulted in the highest feed intake, egg production, egg weight, egg mass values, and improved feed conversion ratio (kg eggs/kg feed). The dietary inclusion of soybean hulls determined low yolk pigmentation, and of rice hulls, low egg specific gravity. The 16% crude protein diet with rice hulls promoted the best feed conversion ratio. Hens fed the reference diet presented higher egg mass and better feed conversion ratio per kg eggs and per dozen eggs. Hens fed the diets with low crude protein level (12%) had reduced nitrogen excretion, but presented worse egg production.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)