930 resultados para diagrama triangular
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The great majority of analytical models for extragalactic radio sources suppose self-similarity and can be classified into three types: I, II and III. We have developed a model that represents a generalization of most models found in the literature and showed that these three types are particular cases. The model assumes that the area of the head of the jet varies with the jet size according to a power law and the jet luminosity is a function of time. As it is usually done, the basic hypothesis is that there is an equilibrium between the pressure exerted both by the head of the jet and the cocoon walls and the ram pressure of the ambient medium. The equilibrium equations and energy conservation equation allow us to express the size and width of the source and the pressure in the cocoon as a power law and find the respective exponents. All these assumptions can be used to calculate the evolution of the source size, width and radio luminosity. This can then be compared with the observed width-size relation for radio lobes and the power-size (P-D) diagram of both compact (GPS and CSS) and extended sources from the 3CR catalogue. In this work we introduce two important improvement as compared with a previous work: (1)We have put together a larger sample of both compact and extended radio sources
Resumo:
This work is a detailed study of self-similar models for the expansion of extragalactic radio sources. A review is made of the definitions of AGN, the unified model is discussed and the main characteristics of double radio sources are examined. Three classification schemes are outlined and the self-similar models found in the literature are studied in detail. A self-similar model is proposed that represents a generalization of the models found in the literature. In this model, the area of the head of the jet varies with the size of the jet with a power law with an exponent γ. The atmosphere has a variable density that may or may not be spherically symmetric and it is taken into account the time variation of the cinematic luminosity of the jet according to a power law with an exponent h. It is possible to show that models Type I, II and III are particular cases of the general model and one also discusses the evolution of the sources radio luminosity. One compares the evolutionary curves of the general model with the particular cases and with the observational data in a P-D diagram. The results show that the model allows a better agreement with the observations depending on the appropriate choice of the model parameters.
Resumo:
In the present work, we have studied the nature of the physical processes of the coronal heating, considering as basis significant samples of single and binary evolved stars, that have been achieved with the ROSAT satellite. In a total of 191 simple stars were studied, classified in the literature as giants with spectral type F, G and K. The results were compared with those obtained from 106 evolved stars of spectral type F, G and K, which belong to the spectroscopic binary systems. Accurate measurements on rotation and information about binarity were obtained from De Medeiros s catalog. We have analysed the behavior of the coronal activity in function of diverse stellar parameters. With the purpose to better clarify the profile of the stars evolution, the HR diagram was built for the two samples of stars, the single and the binary ones. The evolved traces added in the diagram were obtained from the Toulouse-Geneve code, Nascimento et al. (2000). The stars were segregated in this diagram not only in range of rotational speed but also in range of X-ray flux. Our analysis shows clearly that the single stars and the binary ones have coronal activity controlled by physical process independent on the rotation. Non magnetic processes seem to be strongly influencing the coronal heating. For the binary stars, we have also studied the behavior of the coronal emission as a function of orbital parameters, such as period and eccentricity, in which it was revealed the existence of a discontinuity in the emission of X-rays around an orbital period of 100 days. The study helped to conclude that circular orbits of the binary stars are presented as a necessary property for the existence of a higher level ofX-rays emission, suggesting that the effect of the gravitational tide has an important role in the coronal activity level. When applied the Kolmogorov-Smirnov test (KS test ) for the Vsini and FX parameters to the samples of single and binary stars, we could evidence very relevant aspects for the understanding of the mechanisms inherent to the coronal activity. For the Vsini parameter, the differences between the single stars and the binary ones for rotation over 6.3 km/s were really remarkable. We believe, therefore, that the existence of gravitational tide is, at least, one of the factors that most contribute for this behavior. About the X-rays flux, the KS test showed that the behavior of the single and the binary stars, regarding the coronal activity, comes from the same origin
Resumo:
The usual Ashkin-Teller (AT) model is obtained as a superposition of two Ising models coupled through a four-spin interaction term. In two dimension the AT model displays a line of fixed points along which the exponents vary continuously. On this line the model becomes soluble via a mapping onto the Baxter model. Such richness of multicritical behavior led Grest and Widom to introduce the N-color Ashkin-Teller model (N-AT). Those authors made an extensive analysis of the model thus introduced both in the isotropic as well as in the anisotropic cases by several analytical and computational methods. In the present work we define a more general version of the 3-color Ashkin-Teller model by introducing a 6-spin interaction term. We investigate the corresponding symmetry structure presented by our model in conjunction with an analysis of possible phase diagrams obtained by real space renormalization group techniques. The phase diagram are obtained at finite temperature in the region where the ferromagnetic behavior is predominant. Through the use of the transmissivities concepts we obtain the recursion relations in some periodical as well as aperiodic hierarchical lattices. In a first analysis we initially consider the two-color Ashkin-Teller model in order to obtain some results with could be used as a guide to our main purpose. In the anisotropic case the model was previously studied on the Wheatstone bridge by Claudionor Bezerra in his Master Degree dissertation. By using more appropriated computational resources we obtained isomorphic critical surfaces described in Bezerra's work but not properly identified. Besides, we also analyzed the isotropic version in an aperiodic hierarchical lattice, and we showed how the geometric fluctuations are affected by such aperiodicity and its consequences in the corresponding critical behavior. Those analysis were carried out by the use of appropriated definitions of transmissivities. Finally, we considered the modified 3-AT model with a 6-spin couplings. With the inclusion of such term the model becomes more attractive from the symmetry point of view. For some hierarchical lattices we derived general recursion relations in the anisotropic version of the model (3-AAT), from which case we can obtain the corresponding equations for the isotropic version (3-IAT). The 3-IAT was studied extensively in the whole region where the ferromagnetic couplings are dominant. The fixed points and the respective critical exponents were determined. By analyzing the attraction basins of such fixed points we were able to find the three-parameter phase diagram (temperature £ 4-spin coupling £ 6-spin coupling). We could identify fixed points corresponding to the universality class of Ising and 4- and 8-state Potts model. We also obtained a fixed point which seems to be a sort of reminiscence of a 6-state Potts fixed point as well as a possible indication of the existence of a Baxter line. Some unstable fixed points which do not belong to any aforementioned q-state Potts universality class was also found
Resumo:
In this work we study the phase transitions of the ferromagnetic three-color Ashkin-Teller Model in the hierarquical lattice generated by the Wheatstone bridge using real space renormalization group approach. With such technique we obtain the phase diagram and its critical points with respective critical exponents v. This model presents four phases: ferromagnetic, paramagnetic and two intermediates. Nine critical points were found, three of which are of Ising model type, three are of four states Potts model type, one is of eight states Potts model type and the last two which do not correspond to any Potts model with integer number of states. iv
Resumo:
Double radio sources have been studied since the discovery of extragalactic radio sources in the decade of 1930. Since then, several numerical studies and analytical models have been proposed seeking a better understanding of the physical phenomena that determines the origin and evolution of such objects. In this thesis, we intended to study the evolution problem of the double radio sources in two fronts: in the ¯rst we have developed an analytical self-similar model that represents a generalization of most models found in the literature and solve some existent problems related to the jet head evolution. We deal with this problem using samples of hot spot sizes to ¯nd a power law relation between the jet head dimension and the source length. Using our model, we were able to draw the evolution curves of the double sources in a PD diagram for both compact sources (GPS and CSS) and extended sources of the 3CR catalogue. We have alson developed a computation tool that allows us to generate synthetic radio maps of the double sources. The objective is to determine the principal physical parameters of those objects by comparing synthetic and observed radio maps. In the second front, we used numeric simulations to study the interaction of the extra- galactic jets with the environment. We simulated situations where the jet propagates in a medium with high density contrast gas clouds capable to block the jet forward motion, forming the distorted structures observed in the morphology of real sources. We have also analyzed the situation in which the jet changes its propagation direction due to a change of the source main axis, creating the X-shaped sources. The comparison between our simulations and the real double radio sources, enable us to determine the values of the main physical parameters responsible for the distortions observed in those objects
Resumo:
There is presently a worldwide interest in artificial magnetic systems which guide research activities in universities and companies. Thin films and multilayers have a central role, revealing new magnetic phases which often lead to breakthroughs and new technology standards, never thought otherwise. Surface and confinement effects cause large impact in the magnetic phases of magnetic materials with bulk spatially periodic patterns. New magnetic phases are expected to form in thin film thicknesses comparable to the length of the intrinsic bulk magnetic unit cell. Helimagnetic materials are prototypes in this respect, since the bulk magnetic phases consist in periodic patterns with the length of the helical pitch. In this thesis we study the magnetic phases of thin rare-earth films, with surfaces oriented along the (002) direction. The thesis includes the investigation of the magnetic phases of thin Dy and Ho films, as well as the thermal hysteresis cycles of Dy thin films. The investigation of the thermal hysteresis cycles of thin Dy films has been done in collaboration with the Laboratory of Magnetic Materials of the University of Texas, at Arlington. The theoretical modeling is based on a self-consistent theory developed by the Group of Magnetism of UFRN. Contributions from the first and second neighbors exchange energy, from the anisotropy energy and the Zeeman energy are calculated in a set of nonequivalent magnetic ions, and the equilibrium magnetic phases, from the Curie temperature up to the Nèel temperature, are determined in a self-consistent manner, resulting in a vanishing torque in the magnetic ions at all planes across the thin film. Our results reproduce the known isothermal and iso-field curves of bulk Dy and Ho, and the known spin-slip phases of Ho, and indicate that: (i) the confinement in thin films leads to a new magnetic phase, with alternate helicity, which leads to the measured thermal hysteresis of Dy ultrathin films, with thicknesses ranging from 4 nm to 16 nm; (ii) thin Dy films have anisotropy dominated surface lock-in phases, with alignment of surface spins along the anisotropy easy axis directions, similar to the known spin-slip phases of Ho ( which form in the bulk and are commensurate to the crystal lattice); and (iii) the confinement in thin films change considerably the spin-slip patterns of Ho.
Resumo:
A real space renormalization group method is used to investigate the criticality (phase diagrams, critical expoentes and universality classes) of Z(4) model in two and three dimensions. The values of the interaction parameters are chosen in such a way as to cover the complete phase diagrams of the model, which presents the following phases: (i) Paramagnetic (P); (ii) Ferromagnetic (F); (iii) Antiferromagnetic (AF); (iv) Intermediate Ferromagnetic (IF) and Intermediate Antiferromagnetic (IAF). In the hierarquical lattices, generated by renormalization the phase diagrams are exact. It is also possible to obtain approximated results for square and simple cubic lattices. In the bidimensional case a self-dual lattice is used and the resulting phase diagram reproduces all the exact results known for the square lattice. The Migdal-Kadanoff transformation is applied to the three dimensional case and the additional phases previously suggested by Ditzian et al, are not found
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Resumo:
In this work we have studied, by Monte Carlo computer simulation, several properties that characterize the damage spreading in the Ising model, defined in Bravais lattices (the square and the triangular lattices) and in the Sierpinski Gasket. First, we investigated the antiferromagnetic model in the triangular lattice with uniform magnetic field, by Glauber dynamics; The chaotic-frozen critical frontier that we obtained coincides , within error bars, with the paramegnetic-ferromagnetic frontier of the static transition. Using heat-bath dynamics, we have studied the ferromagnetic model in the Sierpinski Gasket: We have shown that there are two times that characterize the relaxation of the damage: One of them satisfy the generalized scaling theory proposed by Henley (critical exponent z~A/T for low temperatures). On the other hand, the other time does not obey any of the known scaling theories. Finally, we have used methods of time series analysis to study in Glauber dynamics, the damage in the ferromagnetic Ising model on a square lattice. We have obtained a Hurst exponent with value 0.5 in high temperatures and that grows to 1, close to the temperature TD, that separates the chaotic and the frozen phases
Resumo:
In this work we have studied the effects of random biquadratic and random fields in spin-glass models using the replica method. The effect of a random biquadratic coupling was studied in two spin-1 spin-glass models: in one case the interactions occur between pairs of spins, whereas in the second one the interactions occur between p spins and the limit p > oo is considered. Both couplings (spin glass and biquadratic) have zero-mean Gaussian probability distributions. In the first model, the replica-symmetric assumption reveals that the system presents two pha¬ses, namely, paramagnetic and spin-glass, separated by a continuous transition line. The stability analysis of the replica-symmetric solution yields, besides the usual instability associated with the spin-glass ordering, a new phase due to the random biquadratic cou¬plings between the spins. For the case p oo, the replica-symmetric assumption yields again only two phases, namely, paramagnetic and quadrupolar. In both these phases the spin-glass parameter is zero. Besides, it is shown that they are stable under the Almeida-Thouless stability analysis. One of them presents negative entropy at low temperatures. We developed one step of replica simmetry breaking and noticed that a new phase, the biquadratic glass phase, emerge. In this way we have obtained the correct phase diagram, with.three first-order transition lines. These lines merges in a common triple point. The effects of random fields were studied in the Sherrington-Kirkpatrick model consi¬dered in the presence of an external random magnetic field following a trimodal distribu¬tion {P{hi) = p+S(hi - h0) +Po${hi) +pS(hi + h0))- It is shown that the border of the ferromagnetic phase may present, for conveniently chosen values of p0 and hQ, first-order phase transitions, as well as tricritical points at finite temperatures. It is verified that the first-order phase transitions are directly related to the dilution in the fields: the extensions of these transitions are reduced for increasing values of po- In fact, the threshold value pg, above which all phase transitions are continuous, is calculated analytically. The stability analysis of the replica-symmetric solution is performed and the regions of validity of such a solution are identified
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Resumo:
Neste trabalho investigamos aspectos da propagação de danos em sistemas cooperativos, descritos por modelos de variáveis discretas (spins), mutuamente interagentes, distribuídas nos sítios de uma rede regular. Os seguintes casos foram examinados: (i) A influência do tipo de atualização (paralela ou sequencial) das configurações microscópicas, durante o processo de simulação computacional de Monte Carlo, no modelo de Ising em uma rede triangular. Observamos que a atualização sequencial produz uma transição de fase dinâmica (Caótica- Congelada) a uma temperatura TD ≈TC (Temperatura de Curie), para acoplamentos ferromagnéticos (TC=3.6409J/Kb) e antiferromagnéticos (TC=0). A atualização paralela, que neste caso é incapaz de diferenciar os dois tipos de acoplamentos, leva a uma transição em TD ≠TC; (ii) Um estudo do modelo de Ising na rede quadrada, com diluição temperada de sítios, mostrou que a técnica de propagação de danos é um eficiente método para o cálculo da fronteira crítica e da dimensão fractal do aglomerado percolante, já que os resultados obtidos (apesar de um esforço computacional relativamente modesto), são comparáveis àqueles resultantes da aplicação de outros métodos analíticos e/ou computacionais de alto empenho; (iii) Finalmente, apresentamos resultados analíticos que mostram como certas combinações especiais de danos podem ser utilizadas para o cálculo de grandezas termodinâmicas (parâmetros de ordem, funções de correlação e susceptibilidades) do modelo Nα x Nβ, o qual contém como casos particulares alguns dos modelos mais estudados em Mecânica Estatística (Ising, Potts, Ashkin Teller e Cúbico)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior