998 resultados para delta 13C, carbonate
Resumo:
Records of skeletal delta18O in monthly and Sr/Ca ratios in half-yearly resolution were obtained from a Bermuda coral (Diploria labyrinthiformis) for the time period 1520-1603 (+/-15 yr) AD within the Little Ice Age. Annual and decadal averages of both sea-surface temperature proxies indicate temperature variabilities of 0.5°C (standard deviation) and 0.3°C, respectively. Both numbers are close to recent instrumental observations. Approximately 30% of the interannual time series variance of delta18O is concentrated in broad bands centered at periods of ~30, 16, and 7.8 yr, the last two reflecting the influence of the North Atlantic Oscillation. Although this large-scale climate signal is present in the record, there is no correlation with other contemporaneous northern hemisphere proxy data, resulting from spatial differences in climate variability.
Resumo:
We present a 55-year-long record (1928-1982) of Sr/Ca in a Bermuda coral (Diploria strigosa), which we use to reconstruct local twentieth century climate features. The clearest climate signal emerges for the late-year Sr/Ca. Although the coral was collected in shallow water (12 m), the correlation with station data is highest for temperatures at 50 m depth (r = -0.70), suggesting that local temperatures at the collection site are not representative for the sea surface temperatures in the adjacent open ocean. The most striking feature of the coral record is the persistent and significant correlation (r = -0.50) with the North Atlantic Oscillation (NAO) index. Field correlations of fall Sr/Ca with the winter sea level pressure (SLP) show the typical spatial NAO pattern. The stable relationship with the NAO shows that Sr/Ca in Bermuda corals is a suitable tool for the reconstruction of North Atlantic climate variability.
Resumo:
The Agulhas Bank region, south of Africa, is an oceanographically important and complex area. The leakage of warm saline Indian Ocean water into the South Atlantic around the southern tip of Africa is a crucial factor in the global thermohaline circulation. Foraminiferal assemblage, stable isotope and sedimentological data from the top 10 m of core MD962080, recovered from the western Agulhas Bank Slope, are used to indicate changes in water mass circulation in the southeastern South Atlantic for the last 450 kyr. Sedimentological and planktonic foraminiferal data give clear signals of cold water intrusions. The benthic stable isotope record provides the stratigraphic framework and indicates that the last four climatic cycles are represented (i.e. down to marine isotope stage (MIS) 12). The planktonic foraminiferal assemblages bear a clear transitional to subantarctic character with Globorotalia inflata and Neogloboquadrina pachyderma (dextral) being the dominant taxa. Input of cold, subantarctic waters into the region by means of leakage through the Subtropical Convergence, as part of Agulhas ring shedding, and a general cooling of surface waters is suggested by increased occurrence of the subantarctic assemblage during glacial periods. Variable input of Indian Ocean waters via the Agulhas Current is indicated by the presence of tropical/subtropical planktonic foraminiferal species Globoquadrina dutertrei, Globigerinoides ruber (alba) and Globorotalia menardii with maximum leakage occurring at glacial terminations. The continuous presence of G. menardii throughout the core suggests that the exchange of water from the South Indian Ocean to the South Atlantic Ocean was never entirely obstructed in the last 450 kyr. The benthic carbon isotope record and sediment textural data reflect a change in bottom water masses over the core location from North Atlantic Deep Water to Upper Southern Component Water. Planktonic foraminiferal assemblages and sediment composition indicate a profound change in surface water conditions over the core site approximately 200-250 kyr BP, during MIS 7, from mixed subantarctic and transitional water masses to overall warmer surface water conditions.
Resumo:
Abundant Fe-Mn carbonate concretions (mainly siderite, manganosiderite, and rhodochrosite) were found in the hemipelagic claystones of Site 603 on the eastern North American continental rise. They occur as nodules, micronodules, or carbonate-replaced burrow fills and layers at a subbottom depth of between ~ 120 (Pliocene) and 1160 m (Albian-Cenomanian). In general, the Fe-Mn carbonate concretions form from CO3- produced by the microbiological degradation of organic matter in the presence of abundant Fe + or Mn + and very low S- concentrations. However, there is also some evidence for diagenetic replacement of preexisting calcite by siderite. The carbon isotope composition of diagenetic Fe-Mn carbonate nodules is determined by CO2 reduction during methanogenesis. Carbonate nodules in Cretaceous sediments at sub-bottom depths of 1085 and 1160 m have distinctly lower d13C values (- 12.2 and - 12.9 per mil) than Neogene siderites, associated with abundant biogenic methane in the pore space (-8.9 to 1.7 per mil between 330 and 780 m depth). Since no isotopic zonation could be detected within individual nodules, we assume that the isotopic composition reflects more or less geochemical conditions at the present burial depth of the carbonate nodules. Carbonates did not precipitate within the zone of sulfate reduction (approximately 0.01 to 10 m), where all of the pyrite was formed. The oxygen isotope composition indicates precipitation from seawater-derived interstitial waters. The d18O values decrease with increasing burial depth from + 5.1 to - 1.2 per mil, suggesting successively higher temperatures during carbonate formation.
Resumo:
Inoceramus is an epibenthic bivalve which lived in a wide variety of paleoenvironments encompassing a broad range of paleodepths. A survey of all Cretaceous sediments from Deep Sea Drilling Project legs 1-69 and 75 revealed over 500 Inoceramus specimens at twenty sites. Of these, 47 well-preserved Late Cretaceous specimens from the South Atlantic, Pacific and Indian Oceans were analyzed for oxygen and carbon isotopes. The specimens exhibit small internal isotopic variability and oxygen isotopic paleotemperatures that are consistent with a deep-sea habitat. Paleotemperatures ranging from 5 to 16°C show that Late Cretaceous oceans were significantly warmer than the present oceans. The data suggest that deep water was formed both by cooling at high latitudes and by evaporation in the subtropics.
Resumo:
Here we report on data from an oceanographic cruise on the German research vessel Meteor covering large parts of the Mediterranean Sea during spring of 2011. The main objective of this cruise was to conduct measurements of physical, chemical and biological variables on a section across the Mediterranean Sea with the goal of producing a synoptic picture of the distribution of relevant physical and biogeochemical properties, in order to compare those to historic data sets. During the cruise, a comprehensive data set of relevant variables following the guide lines for repeat hydrography outlined by the GO-SHIP group (http://www.go-ship.org/) was collected. The measurements include salinity and temperature (CTD), an over-determined carbonate system, inorganic nutrients, oxygen, transient tracers (CFC-12, SF6), helium isotopes and tritium, and carbon isotopes. The cruise sampled all major basins of the Mediterranean Sea following roughly an east-to-west section from the coast of Lebanon through to the Strait of Gibraltar, and to the coast of Portugal. Also a south-to-north section from the Ionian Sea to the Adriatic Sea was carried out. Additionally, sampling in the Aegean, Adriatic and Tyrrhenian Seas were carried out. The sections roughly followed lines and positions that have been sampled previously during other programs, thus providing the opportunity for comparative investigations of the temporal development of various parameters.
Resumo:
The radiocarbon contents of various biomarkers extracted from the varve-counted sediments of Saanich Inlet, Canada, were determined to assess their applicability for dating purposes. Calibrated ages obtained from the marine planktonic archaeal biomarker crenarchaeol compared favorably with varve-count ages. The same conclusion could be drawn for a more general archaeal biomarker (GDGT-0), although this biomarker proved to be less reliable due to its less-specific origin. The results also lend support to earlier indications that marine crenarchaeota use dissolved inorganic carbon (DIC) as their carbon source. The average reservoir age offset DR of 430 years, determined using the crenarchaeol radiocarbon ages, varied by ±110 years. This may be caused by natural variations in ocean-atmosphere mixing or upwelling at the NE Pacific coast but variability may also be due to an inconsistency in the marine calibration curve when used at sites with high reservoir ages.
Resumo:
The aim of this study was to evaluate the potential of constructing an oxygen and carbon isotope stratigraphy for the late Pleistocene succession from Hole 1127B drilled on the Great Australian Bight. Stable isotope analyses were performed on bulk- and fine-fraction (<38 µm) sediment samples. The oxygen isotope variations are generally smaller in magnitude than expected from global pelagic records. This is most likely due to the neriticly dominated sediment composition. Correlation of the oxygen isotope data with carbonate mineralogy and downhole logging data shows simultaneous variations and trends, which are particularly evident in the mid-Pleistocene sediments. Correlation of the oxygen isotope data with the classic SPECMAP curve is used to evaluate the stratigraphic potential of the Site 1127 sediments. This study indicates that an isotope stratigraphy based on planktonic and benthic foraminifers is needed to fully evaluate the response of cool-water carbonates deposited in a margin setting to global ice-volume fluctuations and, hence, the associated sea level variations.
Resumo:
Red-brown dolomitic claystones overlay the Marsili Basin basaltic basement at ODP Site 650. Sequential leaching experiments reveal that most of the elements considered to have a hydrothermal or hydrogenous origin in a marine environment, such as Fe, Cu, Zn, Pb, Co, Ni, are present mainly in the aluminosilicate fraction of the dolomitic claystones. Their vertical distribution, content and partitioning chemistry of trace elements, and REE patterns suggest enhanced terrigenous input during dolomite formation, but no significant hydrothermal influence from the underlying basaltic basement. Positive correlations in the C and O isotopes in the dolomites reflect complex conditions during the dolomitization. The stable isotopes can be controlled in part by temperature variations during the dolomitization. Majority of the samples, however, form a trend that is steeper than expected for only temperature control on the C and O isotopes. The latter indicates possible isotopic heterogeneity in the proto-carbonate that can be related to arid climatic conditions during the formation of the basal dolomitic claystones. In addition, the dolostones stable isotopic characteristics can be influenced by diagenetic release of heavier delta18O from clay dehydration and/or alteration of siliciclastic material. Strontium and Pb isotopic data reveal that the non-carbonate fraction, the "dye" of the dolomitic claystones, is controlled by Saharan dust (75%-80%) and by material with isotopic characteristics similar to the Aeolian Arc volcanoes (20%-25%). The non-carbonate fraction of the calcareous ooze overlying the dolomitic claystones has a Sr and Pb isotopic composition identical to that of the dolomitic claystones, indicating that no change in the input sources to the sedimentary basin occurred during and after the dolomitization event. Combination of climato-tectonic factors most probably resulted in suitable conditions for dolomitization in the Marsili and the nearby Vavilov Basins. The basal dolomitic claystone sequence was formed at the initiation of the opening of the Marsili Basin (~2 Ma), which coincided with the consecutive glacial stage. The glaciation caused arid climate and enhanced evaporation that possibly contributed to the stable isotope variations in the proto-carbonate. The conductive cooling of the young lithosphere produced high heat flow in the region, causing low-temperature passive convection of pore waters in the basal calcareous sediment. We suggest that this pumping process was the major dolomitization mechanism since it is capable of driving large volumes of seawater (the source of Mg2+) through the sediment. The red-brown hue of the dolomitic claystones is terrigenous contribution of the glacially induced high eolian influx and was not hydrothermally derived from the underlying basaltic basement. The detailed geochemical investigation of the basal dolomitic sequence indicates that the dolomitization was most probably related to complex tectono-climatic conditions set by the initial opening stages of the Marsili Basin and glaciation.
Resumo:
Li and Li isotopes have been measured in the clay fraction of sediments recovered from the Middle Valley hydrothermal site on the Juan De Fuca Ridge. The Li content of pure detrital clays is 51 ppm while hydrothermal clays and carbonates have lower Li (22+/-11 ppm). However, there is no clear relationship between the mineralogy of the hydrothermal alteration products and their Li content. The d7Li value of the detrital clays is +5.8?. Hydrothermal clays and carbonates have d7Li in the range of -3.9? to +7.8?; these values do not seem to be dependent on the temperature at which they formed. Modelling of the Li and Li isotope systematics indicates that the fluid from which the alteration products form is significantly enriched in Li (higher than 10000 µmol/kg) relative to pore fluids recovered from within the sediments (up to 589 µmol/kg; [Wheat, C.G., M.J. Mottl, 1994. Data report: trace metal composition of pore water from Sites 855 through 858, Middle valley, Juan De Fuca Ridge. In Mottl, M.J., Davis, E.E., Fisher, A.T., Slack, J.F. (Eds.), Proc. ODP, Sci. Res. 139: 749-755; doi:10.2973/odp.proc.sr.139.269.1994]), and that this Li is derived from sediment. Thus, the alteration products are not in equilibrium with their conjugate pore fluids; rather, the alteration minerals formed at lower water/sediment ratios. This suggests that fluid flow pathways at Middle Valley were more diffuse in the past than they are today.
Resumo:
Two bottom sediment cores (BP00-23/7 and BP00-7/6) recovered from the Yenisei transect in the southern Kara Sea are described. Data on their grain size composition, clay and heavy mineral assemblages, and distribution of a large group of chemical elements are presented. Radiocarbon dates based on AMS C-14 method suggest the Holocene age of sediments in the cores. Literature data on physical properties and foraminifers have also been analyzed. The facies affiliation of the lithostratigraphic subdivisions has been unraveled. History of the Yenisei River runoff in the Holocene has been reconstructed on the basis of different indicators.
Resumo:
Results of pedogeomorphological, geochronological and paleobotanical investigations are presented covering the last ca. 4,000 years. The study sites are located in the heavily degraded Kyichu River catchment around Lhasa at 3,600-4,600 m a.s.l. Repeatedly, colluvial sediments have been recorded overlying paleosols. These deposits can be divided into i) coarse-grained sediments with a high proportion of stones and boulders originating from alluvial fans and debris flows, ii) matrix supported sediments with some stones and boulders originating from mudflows or combined colluvial processes such as hillwash plus rock fall, and iii) fine-grained sediments originating from hill wash. The IRSL multi-level dating of profile QUG 1 points to a short-time colluvial sedimentation between 1.0 ± 0.1 and 0.8 ± 0.1 ka. In contrast, dated paleosols of profile GAR 1 (7,908 ± 99 and 3,668 ± 57 BP) encompass a first colluvial episode. Here, the upper colluvial sedimentation took place during several periods between 2.6 ± 0.3 and 0.4 ± 0.1 ka. For the first time in Tibet, a systematic extraction, determination and dating of charcoals from buried paleosols was conducted. The charcoals confirm the Late Holocene presence of juniper forests or woodlands in a now treeless, barren environment. A pollen diagram from Lhasa shows a distinct decline of pollen of the Jumperus-type around 4,140 ± 50 BP, which is interpreted as indicating a clearing of forests on the adjacent slopes. It is assumed that the environmental changes from forests to desertic rangelands since ca. 4,000 BP have been at least reinforced by humans.
Resumo:
Siwalik paleosol and Bengal Fan sediment samples were analyzed for the abundance and isotopic composition of n-alkanes in order to test for molecular evidence of the expansion of C4 grasslands on the Indian subcontinent. The carbon isotopic compositions of high-molecular-weight alkanes in both the ancient soils and sediments record a shift from low d13C values (ca. -30 per mil) to higher values (ca. -22 per mil) prior to 6 Ma. This shift is similar in magnitude to that recorded by paleosol carbonate and fossil teeth, and is consistent with a relatively rapid transition from dominantly C3 vegetation to an ecosystem dominated by C4 plants typical of semi-arid grasslands. The n-alkane values from our paleosol samples indicate that the isotopic change began as early as 9 Ma, reflecting either a growing contribution of C4 plants to a dominantly C3 biomass or a decrease in water availability to C3 plants. Molecular and isotopic analyses of other compounds, including n-alcohols and low-molecular weight n-alkanes indicate paleosol organic matter contains contributions from a mixture of sources, including vascular plants, algae and/or cyanobacteria and microorganisms. A range of inputs is likewise reflected in the isotopic composition of the total organic carbon from these samples. In addition, the n-alkanes from two samples show little evidence for pedegenic inputs and we suggest the compounds were derived instead from the paleosol's parent materials. We suggest the record of vegetation in ancient terrestrial ecosystems is better reconstructed using isotopic signatures of molecular markers, rather than bulk organic carbon. This approach provides a means of expanding the spatial and temporal records of C4 plant biomass which will help to resolve possible tectonic, climatic or biological controls on the rise of this important component of the terrestrial biosphere.