952 resultados para chiral electrodes
Resumo:
To counteract and prevent the deleterious effect of free radicals the living organisms have developed complex endogenous and exogenous antioxidant systems. Several analytical methodologies have been proposed in order to quantify antioxidants in food, beverages and biological fluids. This paper revises the electroanalytical approaches developed for the assessment of the total or individual antioxidant capacity. Four electrochemical sensing approaches have been identified, based on the direct electrochemical detection of antioxidant at bare or chemically modified electrodes, and using enzymatic and DNA-based biosensors.
Resumo:
The indiscriminate use of antibiotics in foodproducing animals has received increasing attention as a contributory factor in the international emergence of antibiotic- resistant bacteria (Woodward in Pesticide, veterinary and other residues in food, CRC Press, Boca Raton, 2004). Numerous analytical methods for quantifying antibacterial residues in edible animal products have been developed over years (Woodward in Pesticide, veterinary and other residues in food, CRC Press, Boca Raton, 2004; Botsoglou and Fletouris in Handbook of food analysis, residues and other food component analysis, Marcel Dekker, Ghent, 2004). Being Amoxicillin (AMOX) one of those critical veterinary drugs, efforts have been made to develop simple and expeditious methods for its control in food samples. In literature, only one AMOX-selective electrode has been reported so far. In that work, phosphotungstate:amoxycillinium ion exchanger was used as electroactive material (Shoukry et al. in Electroanalysis 6:914–917, 1994). Designing new materials based on molecularly imprinted polymers (MIPs) which are complementary to the size and charge of AMOX could lead to very selective interactions, thus enhancing the selectivity of the sensing unit. AMOXselective electrodes used imprinted polymers as electroactive materials having AMOX as target molecule to design a biomimetic imprinted cavity. Poly(vinyl chloride), sensors of methacrylic acid displayed Nernstian slopes (60.7 mV/decade) and low detection limits (2.9×10-5 mol/L). The potentiometric responses were not affected by pH within 4–5 and showed good selectivity. The electrodes were applied successfully to the analysis of real samples.
Resumo:
As a result of the stressful conditions in aquaculture facilities there is a high risk of bacterial infections among cultured fish. Chlortetracycline (CTC) is one of the antimicrobials used to solve this problem. It is a broad spectrum antibacterial active against a wide range of Gram-positive and Gram-negative bacteria. Numerous analytical methods for screening, identifying, and quantifying CTC in animal products have been developed over the years. An alternative and advantageous method should rely on expeditious and efficient procedures providing highly specific and sensitive measurements in food samples. Ion-selective electrodes (ISEs) could meet these criteria. The only ISE reported in literature for this purpose used traditional electro-active materials. A selectivity enhancement could however be achieved after improving the analyte recognition by molecularly imprinted polymers (MIPs). Several MIP particles were synthesized and used as electro-active materials. ISEs based in methacrylic acid monomers showed the best analytical performance according to slope (62.5 and 68.6 mV/decade) and detection limit (4.1×10−5 and 5.5×10−5 mol L−1). The electrodes displayed good selectivity. The ISEs are not affected by pH changes ranging from 2.5 to 13. The sensors were successfully applied to the analysis of serum, urine and fish samples.
Resumo:
A novel biomimetic sensor for the potentiometric transduction of oxytetracycline is presented. The artificial host was imprinted in methacrylic acid and/or acrylamide based polymers. Different amounts of molecularly imprinted and non-imprinted polymers were dispersed in different plasticizing solvents and entrapped in a poly(vinyl chloride) matrix. Only molecularly imprinted based sensors allowed a potentiometric transduction, suggesting the existence of host–guest interactions. These sensors exhibited a near-Nernstian response in steady state evaluations; slopes and detection limits ranged 42–63 mV/decade and 2.5–31.3 µg/mL, respectively. Sensors were independent from the pH of test solutions within 2–5. Good selectivity was observed towards glycine, ciprofloxacin, creatinine, acid nalidixic, sulfadiazine, cysteine, hydroxylamine and lactose. In flowing media, the biomimetic sensors presented good reproducibility (RSD of ±0.7%), fast response, good sensitivity (65 mV/decade), wide linear range (5.0×10−5 to 1.0×10−2 mol/L), low detection limit (19.8 µg/mL), and a stable baseline for a 5×10−3M citrate buffer (pH 2.5) carrier. The sensors were successfully applied to the analysis of drugs and urine. This work confirms the possibility of using molecularly imprinted polymers as ionophores for organic ion recognition in potentiometric transduction.
Resumo:
Bread is consumed worldwide by man, thus contributing to the regular ingestion of certain inorganic species such as chloride. It controls the blood pressure if associated to a sodium intake and may increase the incidence of stomach ulcer. Its routine control should thus be established by means of quick and low cost procedures. This work reports a double- channel flow injection analysis (FIA) system with a new chloride sensor for the analysis of bread. All solutions are prepared in water and necessary ionic strength adjustments are made on-line. The body of the indicating electrode is made from a silver needle of 0.8 mm i.d. with an external layer of silver chloride. These devices were constructed with different lengths. Electrodes of 1.0 to 3.0 cm presented better analytical performance. The calibration curves under optimum conditions displayed Nernstian behaviour, with average slopes of 56 mV decade-1, with sampling rates of 60 samples h-1. The method was applied to analyze several kinds of bread, namely pão de trigo, pão integral, pão de centeio, pão de mistura, broa de milho, pão sem sal, pão meio sal, pão-de-leite, and pão de água. The accuracy and precision of the potentiometric method were ascertained by comparison to a spectrophotometric method of continuous segmented flow. These methods were validated against ion-chromatography procedures.
Resumo:
This study focused on the development of a sensitive enzymatic biosensor for the determination of pirimicarb pesticide based on the immobilization of laccase on composite carbon paste electrodes. Multi- walled carbon nanotubes(MWCNTs)paste electrode modified by dispersion of laccase(3%,w/w) within the optimum composite matrix(60:40%,w/w,MWCNTs and paraffin binder)showed the best performance, with excellent electron transfer kinetic and catalytic effects related to the redox process of the substrate4- aminophenol. No metal or anti-interference membrane was added. Based on the inhibition of laccase activity, pirimicarb can be determined in the range 9.90 ×10- 7 to 1.15 ×10- 5 molL 1 using 4- aminophenol as substrate at the optimum pH of 5.0, with acceptable repeatability and reproducibility (relative standard deviations lower than 5%).The limit of detection obtained was 1.8 × 10-7 molL 1 (0.04 mgkg 1 on a fresh weight vegetable basis).The high activity and catalytic properties of the laccase- based biosensor are retained during ca. one month. The optimized electroanalytical protocol coupled to the QuEChERS methodology were applied to tomato and lettuce samples spiked at three levels; recoveries ranging from 91.0±0.1% to 101.0 ± 0.3% were attained. No significant effects in the pirimicarb electro- analysis were observed by the presence of pro-vitamin A, vitamins B1 and C,and glucose in the vegetable extracts. The proposed biosensor- based pesticide residue methodology fulfills all requisites to be used in implementation of food safety programs.
Resumo:
Celiac disease (CD) is a gluten-induced autoimmune enteropathy characterized by the presence of antibodies against gliadin (AGA) and anti-tissue transglutaminase (anti-tTG) antibodies. A disposable electrochemical dual immunosensor for the simultaneous detection of IgA and IgG type AGA and antitTG antibodies in real patient’s samples is presented. The proposed immunosensor is based on a dual screen-printed carbon electrode, with two working electrodes, nanostructured with a carbon–metal hybrid system that worked as the transducer surface. The immunosensing strategy consisted of the immobilization of gliadin and tTG (i.e. CD specific antigens) on the nanostructured electrode surface. The electrochemical detection of the human antibodies present in the assayed serum samples was carried out through the antigen–antibody interaction and recorded using alkaline phosphatase labelled anti-human antibodies and a mixture of 3-indoxyl phosphate with silver ions was used as the substrate. The analytical signal was based on the anodic redissolution of enzymatically generated silver by cyclic voltammetry. The results obtained were corroborated with commercial ELISA kits indicating that the developed sensor can be a good alternative to the traditional methods allowing a decentralization of the analyses towards a point-of-care strategy.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Química e Biológica Ramo de Processos Químicos
Resumo:
This paper describes the use of integer and fractional electrical elements, for modelling two electrochemical systems. A first type of system consists of botanical elements and a second type is implemented by electrolyte processes with fractal electrodes. Experimental results are analyzed in the frequency domain, and the pros and cons of adopting fractional-order electrical components for modelling these systems are compared.
Resumo:
Eur. J. Biochem. 271, 1329–1338 (2004)
Resumo:
This Thesis describes the application of automatic learning methods for a) the classification of organic and metabolic reactions, and b) the mapping of Potential Energy Surfaces(PES). The classification of reactions was approached with two distinct methodologies: a representation of chemical reactions based on NMR data, and a representation of chemical reactions from the reaction equation based on the physico-chemical and topological features of chemical bonds. NMR-based classification of photochemical and enzymatic reactions. Photochemical and metabolic reactions were classified by Kohonen Self-Organizing Maps (Kohonen SOMs) and Random Forests (RFs) taking as input the difference between the 1H NMR spectra of the products and the reactants. The development of such a representation can be applied in automatic analysis of changes in the 1H NMR spectrum of a mixture and their interpretation in terms of the chemical reactions taking place. Examples of possible applications are the monitoring of reaction processes, evaluation of the stability of chemicals, or even the interpretation of metabonomic data. A Kohonen SOM trained with a data set of metabolic reactions catalysed by transferases was able to correctly classify 75% of an independent test set in terms of the EC number subclass. Random Forests improved the correct predictions to 79%. With photochemical reactions classified into 7 groups, an independent test set was classified with 86-93% accuracy. The data set of photochemical reactions was also used to simulate mixtures with two reactions occurring simultaneously. Kohonen SOMs and Feed-Forward Neural Networks (FFNNs) were trained to classify the reactions occurring in a mixture based on the 1H NMR spectra of the products and reactants. Kohonen SOMs allowed the correct assignment of 53-63% of the mixtures (in a test set). Counter-Propagation Neural Networks (CPNNs) gave origin to similar results. The use of supervised learning techniques allowed an improvement in the results. They were improved to 77% of correct assignments when an ensemble of ten FFNNs were used and to 80% when Random Forests were used. This study was performed with NMR data simulated from the molecular structure by the SPINUS program. In the design of one test set, simulated data was combined with experimental data. The results support the proposal of linking databases of chemical reactions to experimental or simulated NMR data for automatic classification of reactions and mixtures of reactions. Genome-scale classification of enzymatic reactions from their reaction equation. The MOLMAP descriptor relies on a Kohonen SOM that defines types of bonds on the basis of their physico-chemical and topological properties. The MOLMAP descriptor of a molecule represents the types of bonds available in that molecule. The MOLMAP descriptor of a reaction is defined as the difference between the MOLMAPs of the products and the reactants, and numerically encodes the pattern of bonds that are broken, changed, and made during a chemical reaction. The automatic perception of chemical similarities between metabolic reactions is required for a variety of applications ranging from the computer validation of classification systems, genome-scale reconstruction (or comparison) of metabolic pathways, to the classification of enzymatic mechanisms. Catalytic functions of proteins are generally described by the EC numbers that are simultaneously employed as identifiers of reactions, enzymes, and enzyme genes, thus linking metabolic and genomic information. Different methods should be available to automatically compare metabolic reactions and for the automatic assignment of EC numbers to reactions still not officially classified. In this study, the genome-scale data set of enzymatic reactions available in the KEGG database was encoded by the MOLMAP descriptors, and was submitted to Kohonen SOMs to compare the resulting map with the official EC number classification, to explore the possibility of predicting EC numbers from the reaction equation, and to assess the internal consistency of the EC classification at the class level. A general agreement with the EC classification was observed, i.e. a relationship between the similarity of MOLMAPs and the similarity of EC numbers. At the same time, MOLMAPs were able to discriminate between EC sub-subclasses. EC numbers could be assigned at the class, subclass, and sub-subclass levels with accuracies up to 92%, 80%, and 70% for independent test sets. The correspondence between chemical similarity of metabolic reactions and their MOLMAP descriptors was applied to the identification of a number of reactions mapped into the same neuron but belonging to different EC classes, which demonstrated the ability of the MOLMAP/SOM approach to verify the internal consistency of classifications in databases of metabolic reactions. RFs were also used to assign the four levels of the EC hierarchy from the reaction equation. EC numbers were correctly assigned in 95%, 90%, 85% and 86% of the cases (for independent test sets) at the class, subclass, sub-subclass and full EC number level,respectively. Experiments for the classification of reactions from the main reactants and products were performed with RFs - EC numbers were assigned at the class, subclass and sub-subclass level with accuracies of 78%, 74% and 63%, respectively. In the course of the experiments with metabolic reactions we suggested that the MOLMAP / SOM concept could be extended to the representation of other levels of metabolic information such as metabolic pathways. Following the MOLMAP idea, the pattern of neurons activated by the reactions of a metabolic pathway is a representation of the reactions involved in that pathway - a descriptor of the metabolic pathway. This reasoning enabled the comparison of different pathways, the automatic classification of pathways, and a classification of organisms based on their biochemical machinery. The three levels of classification (from bonds to metabolic pathways) allowed to map and perceive chemical similarities between metabolic pathways even for pathways of different types of metabolism and pathways that do not share similarities in terms of EC numbers. Mapping of PES by neural networks (NNs). In a first series of experiments, ensembles of Feed-Forward NNs (EnsFFNNs) and Associative Neural Networks (ASNNs) were trained to reproduce PES represented by the Lennard-Jones (LJ) analytical potential function. The accuracy of the method was assessed by comparing the results of molecular dynamics simulations (thermal, structural, and dynamic properties) obtained from the NNs-PES and from the LJ function. The results indicated that for LJ-type potentials, NNs can be trained to generate accurate PES to be used in molecular simulations. EnsFFNNs and ASNNs gave better results than single FFNNs. A remarkable ability of the NNs models to interpolate between distant curves and accurately reproduce potentials to be used in molecular simulations is shown. The purpose of the first study was to systematically analyse the accuracy of different NNs. Our main motivation, however, is reflected in the next study: the mapping of multidimensional PES by NNs to simulate, by Molecular Dynamics or Monte Carlo, the adsorption and self-assembly of solvated organic molecules on noble-metal electrodes. Indeed, for such complex and heterogeneous systems the development of suitable analytical functions that fit quantum mechanical interaction energies is a non-trivial or even impossible task. The data consisted of energy values, from Density Functional Theory (DFT) calculations, at different distances, for several molecular orientations and three electrode adsorption sites. The results indicate that NNs require a data set large enough to cover well the diversity of possible interaction sites, distances, and orientations. NNs trained with such data sets can perform equally well or even better than analytical functions. Therefore, they can be used in molecular simulations, particularly for the ethanol/Au (111) interface which is the case studied in the present Thesis. Once properly trained, the networks are able to produce, as output, any required number of energy points for accurate interpolations.
Resumo:
Electrocardiography (ECG) biometrics is emerging as a viable biometric trait. Recent developments at the sensor level have shown the feasibility of performing signal acquisition at the fingers and hand palms, using one-lead sensor technology and dry electrodes. These new locations lead to ECG signals with lower signal to noise ratio and more prone to noise artifacts; the heart rate variability is another of the major challenges of this biometric trait. In this paper we propose a novel approach to ECG biometrics, with the purpose of reducing the computational complexity and increasing the robustness of the recognition process enabling the fusion of information across sessions. Our approach is based on clustering, grouping individual heartbeats based on their morphology. We study several methods to perform automatic template selection and account for variations observed in a person's biometric data. This approach allows the identification of different template groupings, taking into account the heart rate variability, and the removal of outliers due to noise artifacts. Experimental evaluation on real world data demonstrates the advantages of our approach.
Resumo:
Solar cells on lightweight and flexible substrates have advantages over glass-or wafer-based photovoltaic devices in both terrestrial and space applications. Here, we report on development of amorphous silicon thin film photovoltaic modules fabricated at maximum deposition temperature of 150 degrees C on 100 mu m thick polyethylene-naphtalate plastic films. Each module of 10 cm x 10 cm area consists of 72 a-Si:H n-i-p rectangular structures with transparent conducting oxide top electrodes with Al fingers and metal back electrodes deposited through the shadow masks. Individual structures are connected in series forming eight rows with connection ports provided for external blocking diodes. The design optimization and device performance analysis are performed using a developed SPICE model.
Resumo:
This paper presents the Pseudo phase plane (PPP) method for detecting the existence of a nanofilm on the nitroazobenzene-modified glassy carbon electrode (NAB-GC) system. This modified electrode systems and nitroazobenze-nanofilm were prepared by the electrochemical reduction of diazonium salt of NAB at the glassy carbon electrodes (GCE) in nonaqueous media. The IR spectra of the bare glassy carbon electrodes (GCE), the NAB-GC electrode system and the organic NAB film were recorded. The IR data of the bare GC, NAB-GC and NAB film were categorized into five series consisting of FILM1, GC-NAB1, GC1; FILM2, GC-NAB2, GC2; FILM3, GC-NAB3, GC3 and FILM4, GC-NAB4, GC4 respectively. The PPP approach was applied to each group of the data of unmodified and modified electrode systems with nanofilm. The results provided by PPP method show the existence of the NAB film on the modified GC electrode.
Resumo:
A new inherently chiral calix[4]arene ICC 1 has been disclosed. The dissymmetry of 1 is generated from a chirality plane in the quinol moiety of a 1,3-bridged bicyclic calix[4]arene. ICC 1 has been resolved by enantioselective HPLC, and the chiroptical properties of both isolated antipodes (pS)-1 and (pR)-1 confirm their enantiomeric nature. The absolute configuration of the (pS)-1/(pR)-1 enantiomeric pair was established through time-dependent density functional theory (TDDFT) calculations of electronic circular dichroism (CD) spectra. (C) 2014 Elsevier Ltd. All rights reserved.