994 resultados para bushfire risk
Resumo:
In irrigated cropping, as with any other industry, profit and risk are inter-dependent. An increase in profit would normally coincide with an increase in risk, and this means that risk can be traded for profit. It is desirable to manage a farm so that it achieves the maximum possible profit for the desired level of risk. This paper identifies risk-efficient cropping strategies that allocate land and water between crop enterprises for a case study of an irrigated farm in Southern Queensland, Australia. This is achieved by applying stochastic frontier analysis to the output of a simulation experiment. The simulation experiment involved changes to the levels of business risk by systematically varying the crop sowing rules in a bioeconomic model of the case study farm. This model utilises the multi-field capability of the process based Agricultural Production System Simulator (APSIM) and is parameterised using data collected from interviews with a collaborating farmer. We found sowing rules that increased the farm area sown to cotton caused the greatest increase in risk-efficiency. Increasing maize area also improved risk-efficiency but to a lesser extent than cotton. Sowing rules that increased the areas sown to wheat reduced the risk-efficiency of the farm business. Sowing rules were identified that had the potential to improve the expected farm profit by ca. $50,000 Annually, without significantly increasing risk. The concept of the shadow price of risk is discussed and an expression is derived from the estimated frontier equation that quantifies the trade-off between profit and risk.
Resumo:
For many years Australian forest pathologists and other scientists have dreaded the arrival of the rust fungus, Puccinia psidii, commonly known as Myrtle Rust, in Australia. This pathogen eventually did arrive in that country and was first detected in New South Wales in 2010 on Willow Myrtle (Agonis flexuosa). It is generally accepted that it entered the country on an ornamental Myrtales* host brought in by a private nursery. Despite efforts to eradicate the invasive rust, it has already spread widely, now occurring along the east coast of Australia, from temperate areas in Victoria and southern North South Wales to tropical areas in north Queensland.
Resumo:
Hendra virus causes sporadic but typically fatal infection in horses and humans in eastern Australia. Fruit-bats of the genus Pteropus (commonly known as flying-foxes) are the natural host of the virus, and the putative source of infection in horses; infected horses are the source of human infection. Effective treatment is lacking in both horses and humans, and notwithstanding the recent availability of a vaccine for horses, exposure risk mitigation remains an important infection control strategy. This study sought to inform risk mitigation by identifying spatial and environmental risk factors for equine infection using multiple analytical approaches to investigate the relationship between plausible variables and reported Hendra virus infection in horses. Spatial autocorrelation (Global Moran’s I) showed significant clustering of equine cases at a distance of 40 km, a distance consistent with the foraging ‘footprint’ of a flying-fox roost, suggesting the latter as a biologically plausible basis for the clustering. Getis-Ord Gi* analysis identified multiple equine infection hot spots along the eastern Australia coast from far north Queensland to central New South Wales, with the largest extending for nearly 300 km from southern Queensland to northern New South Wales. Geographically weighted regression (GWR) showed the density of P. alecto and P. conspicillatus to have the strongest positive correlation with equine case locations, suggesting these species are more likely a source of infection of Hendra virus for horses than P. poliocephalus or P. scapulatus. The density of horses, climate variables and vegetation variables were not found to be a significant risk factors, but the residuals from the GWR suggest that additional unidentified risk factors exist at the property level. Further investigations and comparisons between case and control properties are needed to identify these local risk factors.
Resumo:
While Aldi’s launch of their new “trial” stores may seem to be an attempt to capture middle income shoppers, it may end in disaster. Aldi’s four new trial stores located in Queensland, NSW, ACT and Victoria, will offer improved lighting, larger layouts and an expanded offering of fresh food including extending produce ranges, in-house bakeries and premium brands. Employing Nielsen’s 2014 Homescan Report, Aldi have determined that only 30% of their customers were now considered “low-income shoppers”. Some 34.4% were from middle-income households and the remaining 35.6% now had household incomes greater than AUD$90,000 a year - a segment which has grown by 6.7% since 2011. So this probably the reason for Aldi’s foray into new stores and ranges. However, such a move is considered risky.
Resumo:
The research project developed a quantitative approach to assess the risk to human health from heavy metals and polycyclic aromatic hydrocarbons in urban stormwater based on traffic and land use factors. The research outcomes are expected to strengthen the scientifically robust management and reuse of urban stormwater. The innovative methodology developed can be applied to evaluate human health risk in relation to toxic chemical pollutants in urban stormwater runoff and for the development of effective risk mitigation strategies.
Resumo:
Most countries of Europe, as well as many countries in other parts of the world, are experiencing an increased impact of natural hazards. It is often speculated, but not yet proven, that climate change might influence the frequency and magnitude of certain hydro-meteorological natural hazards. What has certainly been observed is a sharp increase in financial losses caused by natural hazards worldwide. Eventhough Europe appears to be a space that is not affected by natural hazards to such catastrophic extents as other parts of the world are, the damages experienced here are certainly increasing too. Natural hazards, climate change and, in particular, risks have therefore recently been put high on the political agenda of the EU. In the search for appropriate instruments for mitigating impacts of natural hazards and climate change, as well as risks, the integration of these factors into spatial planning practices is constantly receiving higher attention. The focus of most approaches lies on single hazards and climate change mitigation strategies. The current paradigm shift of climate change mitigation to adaptation is used as a basis to draw conclusions and recommendations on what concepts could be further incorporated into spatial planning practices. Especially multi-hazard approaches are discussed as an important approach that should be developed further. One focal point is the definition and applicability of the terms natural hazard, vulnerability and risk in spatial planning practices. Especially vulnerability and risk concepts are so many-fold and complicated that their application in spatial planning has to be analysed most carefully. The PhD thesis is based on six published articles that describe the results of European research projects, which have elaborated strategies and tools for integrated communication and assessment practices on natural hazards and climate change impacts. The papers describe approaches on local, regional and European level, both from theoretical and practical perspectives. Based on these, passed, current and future potential spatial planning applications are reviewed and discussed. In conclusion it is recommended to shift from single hazard assessments to multi-hazard approaches, integrating potential climate change impacts. Vulnerability concepts should play a stronger role than present, and adaptation to natural hazards and climate change should be more emphasized in relation to mitigation. It is outlined that the integration of risk concepts in planning is rather complicated and would need very careful assessment to ensure applicability. Future spatial planning practices should also consider to be more interdisciplinary, i.e. to integrate as many stakeholders and experts as possible to ensure the sustainability of investments.
Resumo:
Background and Aim The etiology of Crohn's disease (CD) implicates both genetic and environmental factors. Smoking behavior is one environmental risk factor to play a role in the development of CD. The study aimed to assess the contribution of the interleukin 23 receptor (IL23R) in determining disease susceptibility in two independent cohorts of CD, and to investigate the interactions between IL23R variants, smoking behavior, and CD-associated genes, NOD2 and ATG16L1. Methods Ten IL23R single-nucleotide polymorphisms (SNPs) were genotyped in 675 CD cases, and 1255 controls from Brisbane, Australia (dataset 1). Six of these SNPs were genotyped in 318 CD cases and 533 controls from Canterbury, New Zealand (dataset 2). Case–control analysis of genotype and allele frequencies, and haplotype analysis for all SNPs was conducted. Results We demonstrate a strong increased CD risk for smokers in both datasets (odds ratio 3.77, 95% confidence interval 2.88–4.94), and an additive interaction between IL23R SNPs and cigarette smoking. Ileal involvement was a consistent marker of strong SNP–CD association (P ≤ 0.001), while the lowest minor allele frequencies for location were found in those with colonic CD (L2). Three haplotype blocks were identified across the 10 IL23R SNPs conferring different risk of CD. Haplotypes conferred no further risk of CD when compared with single SNP analyses. Conclusion IL23R gene variants determine CD susceptibility in the Australian and New Zealand population, particularly ileal CD. A strong additive interaction exists between IL23R SNPs and smoking behavior resulting in a dramatic increase in disease risk depending upon specific genetic background.
Resumo:
The future use of genetically modified (GM) plants in food, feed and biomass production requires a careful consideration of possible risks related to the unintended spread of trangenes into new habitats. This may occur via introgression of the transgene to conventional genotypes, due to cross-pollination, and via the invasion of GM plants to new habitats. Assessment of possible environmental impacts of GM plants requires estimation of the level of gene flow from a GM population. Furthermore, management measures for reducing gene flow from GM populations are needed in order to prevent possible unwanted effects of transgenes on ecosystems. This work develops modeling tools for estimating gene flow from GM plant populations in boreal environments and for investigating the mechanisms of the gene flow process. To describe spatial dimensions of the gene flow, dispersal models are developed for the local and regional scale spread of pollen grains and seeds, with special emphasis on wind dispersal. This study provides tools for describing cross-pollination between GM and conventional populations and for estimating the levels of transgenic contamination of the conventional crops. For perennial populations, a modeling framework describing the dynamics of plants and genotypes is developed, in order to estimate the gene flow process over a sequence of years. The dispersal of airborne pollen and seeds cannot be easily controlled, and small amounts of these particles are likely to disperse over long distances. Wind dispersal processes are highly stochastic due to variation in atmospheric conditions, so that there may be considerable variation between individual dispersal patterns. This, in turn, is reflected to the large amount of variation in annual levels of cross-pollination between GM and conventional populations. Even though land-use practices have effects on the average levels of cross-pollination between GM and conventional fields, the level of transgenic contamination of a conventional crop remains highly stochastic. The demographic effects of a transgene have impacts on the establishment of trangenic plants amongst conventional genotypes of the same species. If the transgene gives a plant a considerable fitness advantage in comparison to conventional genotypes, the spread of transgenes to conventional population can be strongly increased. In such cases, dominance of the transgene considerably increases gene flow from GM to conventional populations, due to the enhanced fitness of heterozygous hybrids. The fitness of GM plants in conventional populations can be reduced by linking the selectively favoured primary transgene to a disfavoured mitigation transgene. Recombination between these transgenes is a major risk related to this technique, especially because it tends to take place amongst the conventional genotypes and thus promotes the establishment of invasive transgenic plants in conventional populations.
Resumo:
Puccinia psidii, the causal agent of myrtle rust, was first recorded from Latin America more than 100 years ago. It occurs on many native species of Myrtaceae in Latin America and also infects non-native plantation-grown Eucalyptus species in the region. The pathogen has gradually spread to new areas including Australia and most recently South Africa. The aim of this study was to consider the susceptibility of selected Eucalyptus genotypes, particularly those of interest to South African forestry, to infection by P. psidii. In addition, risk maps were compiled based on suitable climatic conditions and the occurrence of potential susceptible tree species. This made it possible to identify the season when P. psidii would be most likely to infect and to define the geographic areas where the rust disease would be most likely to establish in South Africa. As expected, variation in susceptibility was observed between eucalypt genotypes tested. Importantly, species commonly planted in South Africa show good potential for yielding disease-tolerant material for future planting. Myrtle rust is predicted to be more common in spring and summer. Coastal areas, as well as areas in South Africa with subtropical climates, are more conducive to outbreaks of the pathogen.
Resumo:
Thus the objectives of this study can be broadly categorised as follows:- Evaluate current practices adopted (e.g. litter pile-up) prior to re-use of litter for subsequent chicken cycles To establish pathogen die-off that occurs during currently adopted methods of in-shed treatment of litter To establish simple physical parameters to monitor this pathogen reduction and create an understanding of such reduction strategies to aid in-shed management of re-use litter To carry out studies to assess the potential of the re-used litter (once spread) to support pathogens during a typical chicken production cycle. To provide background data for the development of a simple code of practice for an in-shed litter pile-up process
Resumo:
Bats of the genus Pteropus (flying-foxes) are the natural host of Hendra virus (HeV) which periodically causes fatal disease in horses and humans in Australia. The increased urban presence of flying-foxes often provokes negative community sentiments because of reduced social amenity and concerns of HeV exposure risk, and has resulted in calls for the dispersal of urban flying-fox roosts. However, it has been hypothesised that disturbance of urban roosts may result in a stress-mediated increase in HeV infection in flying-foxes, and an increased spillover risk. We sought to examine the impact of roost modification and dispersal on HeV infection dynamics and cortisol concentration dynamics in flying-foxes. The data were analysed in generalised linear mixed models using restricted maximum likelihood (REML). The difference in mean HeV prevalence in samples collected before (4.9%), during (4.7%) and after (3.4%) roost disturbance was small and non-significant (P = 0.440). Similarly, the difference in mean urine specific gravity-corrected urinary cortisol concentrations was small and non-significant (before = 22.71 ng/mL, during = 27.17, after = 18.39) (P= 0.550). We did find an underlying association between cortisol concentration and season, and cortisol concentration and region, suggesting that other (plausibly biological or environmental) variables play a role in cortisol concentration dynamics. The effect of roost disturbance on cortisol concentration approached statistical significance for region, suggesting that the relationship is not fixed, and plausibly reflecting the nature and timing of disturbance. We also found a small positive statistical association between HeV excretion status and urinary cortisol concentration. Finally, we found that the level of flying-fox distress associated with roost disturbance reflected the nature and timing of the activity, highlighting the need for a ‘best practice’ approach to dispersal or roost modification activities. The findings usefully inform public discussion and policy development in relation to Hendra virus and flying-fox management.
Resumo:
Pteropid bats or flying-foxes (Chiroptera: Pteropodidae) are the natural host of Hendra virus (HeV) which sporadically causes fatal disease in horses and humans in eastern Australia. While there is strong evidence that urine is an important infectious medium that likely drives bat to bat transmission and bat to horse transmission, there is uncertainty about the relative importance of alternative routes of excretion such as nasal and oral secretions, and faeces. Identifying the potential routes of HeV excretion in flying-foxes is important to effectively mitigate equine exposure risk at the bat-horse interface, and in determining transmission rates in host-pathogen models. The aim of this study was to identify the major routes of HeV excretion in naturally infected flying-foxes, and secondarily, to identify between-species variation in excretion prevalence. A total of 2840 flying-foxes from three of the four Australian mainland species (Pteropus alecto, P. poliocephalus and P. scapulatus) were captured and sampled at multiple roost locations in the eastern states of Queensland and New South Wales between 2012 and 2014. A range of biological samples (urine and serum, and urogenital, nasal, oral and rectal swabs) were collected from anaesthetized bats, and tested for HeV RNA using a qRT-PCR assay targeting the M gene. Forty-two P. alecto (n = 1410) had HeV RNA detected in at least one sample, and yielded a total of 78 positive samples, at an overall detection rate of 1.76% across all samples tested in this species (78/4436). The rate of detection, and the amount of viral RNA, was highest in urine samples (>serum, packed haemocytes >faecal >nasal >oral), identifying urine as the most plausible source of infection for flying-foxes and for horses. Detection in a urine sample was more efficient than detection in urogenital swabs, identifying the former as the preferred diagnostic sample. The detection of HeV RNA in serum is consistent with haematogenous spread, and with hypothesised latency and recrudesence in flying-foxes. There were no detections in P. poliocephalus (n = 1168 animals; n = 2958 samples) or P. scapulatus (n = 262 animals; n = 985 samples), suggesting (consistent with other recent studies) that these species are epidemiologically less important than P. alecto in HeV infection dynamics. The study is unprecedented in terms of the individual animal approach, the large sample size, and the use of a molecular assay to directly determine infection status. These features provide a high level of confidence in the veracity of our findings, and a sound basis from which to more precisely target equine risk mitigation strategies.
Resumo:
Aflatoxin is a potent carcinogen produced by Aspergillus flavus, which frequently contaminates maize (Zea mays L.) in the field between 40° north and 40° south latitudes. A mechanistic model to predict risk of pre-harvest contamination could assist in management of this very harmful mycotoxin. In this study we describe an aflatoxin risk prediction model which is integrated with the Agricultural Production Systems Simulator (APSIM) modelling framework. The model computes a temperature function for A. flavus growth and aflatoxin production using a set of three cardinal temperatures determined in the laboratory using culture medium and intact grains. These cardinal temperatures were 11.5 °C as base, 32.5 °C as optimum and 42.5 °C as maximum. The model used a low (≤0.2) crop water supply to demand ratio—an index of drought during the grain filling stage to simulate maize crop's susceptibility to A. flavus growth and aflatoxin production. When this low threshold of the index was reached the model converted the temperature function into an aflatoxin risk index (ARI) to represent the risk of aflatoxin contamination. The model was applied to simulate ARI for two commercial maize hybrids, H513 and H614D, grown in five multi-location field trials in Kenya using site specific agronomy, weather and soil parameters. The observed mean aflatoxin contamination in these trials varied from <1 to 7143 ppb. ARI simulated by the model explained 99% of the variation (p ≤ 0.001) in a linear relationship with the mean observed aflatoxin contamination. The strong relationship between ARI and aflatoxin contamination suggests that the model could be applied to map risk prone areas and to monitor in-season risk for genotypes and soils parameterized for APSIM.
Resumo:
Aflatoxin is a potent carcinogen produced by Aspergillus flavus, which frequently contaminates maize (Zea mays L.) in the field between 40° north and 40° south latitudes. A mechanistic model to predict risk of pre-harvest contamination could assist in management of this very harmful mycotoxin. In this study we describe an aflatoxin risk prediction model which is integrated with the Agricultural Production Systems Simulator (APSIM) modelling framework. The model computes a temperature function for A. flavus growth and aflatoxin production using a set of three cardinal temperatures determined in the laboratory using culture medium and intact grains. These cardinal temperatures were 11.5 °C as base, 32.5 °C as optimum and 42.5 °C as maximum. The model used a low (≤0.2) crop water supply to demand ratio—an index of drought during the grain filling stage to simulate maize crop's susceptibility to A. flavus growth and aflatoxin production. When this low threshold of the index was reached the model converted the temperature function into an aflatoxin risk index (ARI) to represent the risk of aflatoxin contamination. The model was applied to simulate ARI for two commercial maize hybrids, H513 and H614D, grown in five multi-location field trials in Kenya using site specific agronomy, weather and soil parameters. The observed mean aflatoxin contamination in these trials varied from <1 to 7143 ppb. ARI simulated by the model explained 99% of the variation (p ≤ 0.001) in a linear relationship with the mean observed aflatoxin contamination. The strong relationship between ARI and aflatoxin contamination suggests that the model could be applied to map risk prone areas and to monitor in-season risk for genotypes and soils parameterized for APSIM.