844 resultados para building blocks of effective teams
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
Previously reported excitation spectra for eumelanin are sparse and inconsistent. Moreover, these studies have failed to account for probe beam attenuation and emission reabsorption within the samples, making them qualitative at best. We report for the first time quantitative excitation spectra for synthetic eumelanin, acquired for a range of solution concentrations and emission wavelengths. Our data indicate that probe beam attenuation and emission reabsorption significantly affect the spectra even in low-concentration eumelanin solutions and that previously published data do not reflect the true excitation profile. We apply a correction procedure (previously applied to emission spectra) to account for these effects. Application of this procedure reconstructs the expected relationship of signal intensity with concentration, and the normalized spectra show a similarity in form to the absorption profiles. These spectra reveal valuable information regarding the photophysics and photochemistry of eumelanin. Most notably, an excitation peak at 365 urn (3.40 eV), whose position is independent of emission wavelength, is possibly attributable to a 5,6-dihydroxyindole-2-carboxylic acid (DHICA) component singly linked to a polymeric structure.
Resumo:
Designer peptides have recently been developed as building blocks for novel self-assembled materials with stimuli-responsive properties. To date, such materials have been based on self-assembly in bulk aqueous solution or at solid-fluid interfaces. We have designed a 21-residue peptide, AM1, as a stimuli-responsive surfactant that switches molecular architectures at a fluid-fluid interface in response to changes in bulk aqueous solution composition. In the presence of divalent zinc at neutral pH, the peptide forms a mechanically strong 'film state'. In the absence of metal ions or at acid pH, the peptide adsorbs to form a mobile 'detergent state'. The two interfacial states can be actively and reversibly switched. Switching between the two states by a change in pH or the addition of a chelating agent leads to rapid emulsion coalescence or foam collapse. This work introduces a new class of surfactants that offer an environmentally friendly approach to control the stability of interfaces in foams, emulsions and fluid-fluid interfaces more generally.
Resumo:
The consequences of demographic dissimilarity for group trust in work teams was examined in a virtual (computer-mediated) and a face-to-face (FTF) environment. Demographic dissimilarity (based on age, gender, country of birth, enrolled degree) was predicted to be negatively associated with group trust in the FTF environment but not in the computer-mediated environment. Participants worked in small groups on a creative task for 3 consecutive days. In the computer-mediated environment, participants worked on the task for an hour per day. In the FTF environment, participants worked on the task for 20 minutes per day. Partial support was found for the effectiveness of computer-mediated groups in reducing the negative consequences of dissimilarity. Age dissimilarity was negatively related to trust in FTF groups but not in computer-mediated groups. Birthplace dissimilarity was positively related to trust in computer-mediated groups. Implications for the successful management of virtual teams are discussed.
Resumo:
Oligosaccharide synthesis using aminosugars requires the presence of a suitable amino protecting group. A number of protecting groups are currently used, and while many display favorable properties, most agents available still suffer from certain disadvantages. This report details the use of a hydrazine labile aminosugar protecting group, N -[1-(4,4-dimethyl-2,6-dioxocyclohex-1-ylidene)ethyl] (Dde), which can be introduced and removed in a facile and cost-effective manner.
Resumo:
Highly lattice mismatched (7.8%) GaAs/GaSb nanowire heterostructures were grown by metal-organic chemical vapor deposition and their detailed structural characteristics were determined by electron microscopy. The facts that (i) no defects have been found in GaSb and its interfaces with GaAs and (ii) the lattice mismatch between GaSb/GaAs was fully relaxed suggest that the growth of GaSb nanowires is purely governed by the thermodynamics. The authors believe that the low growth rate of GaSb nanowires leads to the equilibrium growth. (c) 2006 American Institute of Physics.
Resumo:
Benchmarking of the performance of states, provinces, or districts in a decentralised health system is important for fostering of accountability, monitoring of progress, identification of determinants of success and failure, and creation of a culture of evidence. The Mexican Ministry of Health has, since 2001, used a benchmarking approach based on the World Health Organization (WHO) concept of effective coverage of an intervention, which is defined as the proportion of potential health gain that could be delivered by the health system to that which is actually delivered. Using data collection systems, including state representative examination surveys, vital registration, and hospital discharge registries, we have monitored the delivery of 14 interventions for 2005-06. Overall effective coverage ranges from 54.0% in Chiapas, a poor state, to 65.1% in the Federal District. Effective coverage for maternal and child health interventions is substantially higher than that for interventions that target other health problems. Effective coverage for the lowest wealth quintile is 52% compared with 61% for the highest quintile. Effective coverage is closely related to public-health spending per head across states; this relation is stronger for interventions that are not related to maternal and child health than those for maternal and child health. Considerable variation also exists in effective coverage at similar amounts of spending. We discuss the implications of these issues for the further development of the Mexican health-information system. Benchmarking of performance by measuring effective coverage encourages decision-makers to focus on quality service provision, not only service availability. The effective coverage calculation is an important device for health-system stewardship. In adopting this approach, other countries should select interventions to be measured on the basis of the criteria of affordability, effect on population health, effect on health inequalities, and capacity to measure the effects of the intervention. The national institutions undertaking this benchmarking must have the mandate, skills, resources, and independence to succeed.
Resumo:
Despite the insight gained from 2-D particle models, and given that the dynamics of crustal faults occur in 3-D space, the question remains, how do the 3-D fault gouge dynamics differ from those in 2-D? Traditionally, 2-D modeling has been preferred over 3-D simulations because of the computational cost of solving 3-D problems. However, modern high performance computing architectures, combined with a parallel implementation of the Lattice Solid Model (LSM), provide the opportunity to explore 3-D fault micro-mechanics and to advance understanding of effective constitutive relations of fault gouge layers. In this paper, macroscopic friction values from 2-D and 3-D LSM simulations, performed on an SGI Altix 3700 super-cluster, are compared. Two rectangular elastic blocks of bonded particles, with a rough fault plane and separated by a region of randomly sized non-bonded gouge particles, are sheared in opposite directions by normally-loaded driving plates. The results demonstrate that the gouge particles in the 3-D models undergo significant out-of-plane motion during shear. The 3-D models also exhibit a higher mean macroscopic friction than the 2-D models for varying values of interparticle friction. 2-D LSM gouge models have previously been shown to exhibit accelerating energy release in simulated earthquake cycles, supporting the Critical Point hypothesis. The 3-D models are shown to also display accelerating energy release, and good fits of power law time-to-failure functions to the cumulative energy release are obtained.
Resumo:
The importance of building home, school and community partnerships is increasingly acknowledged since family and community involvement in education is thought to be associated with children’s success at school. This paper reports on aspects of an Australian Government commissioned research project that analysed educational partnerships aiming to enhance children’s numeracy education. Snapshots of two school case studies are presented to highlight features of effective partnerships and the kinds of numeracy learning they supported.
Resumo:
In this thesis we study at perturbative level correlation functions of Wilson loops (and local operators) and their relations to localization, integrability and other quantities of interest as the cusp anomalous dimension and the Bremsstrahlung function. First of all we consider a general class of 1/8 BPS Wilson loops and chiral primaries in N=4 Super Yang-Mills theory. We perform explicit two-loop computations, for some particular but still rather general configuration, that confirm the elegant results expected from localization procedure. We find notably full consistency with the multi-matrix model averages, obtained from 2D Yang-Mills theory on the sphere, when interacting diagrams do not cancel and contribute non-trivially to the final answer. We also discuss the near BPS expansion of the generalized cusp anomalous dimension with L units of R-charge. Integrability provides an exact solution, obtained by solving a general TBA equation in the appropriate limit: we propose here an alternative method based on supersymmetric localization. The basic idea is to relate the computation to the vacuum expectation value of certain 1/8 BPS Wilson loops with local operator insertions along the contour. Also these observables localize on a two-dimensional gauge theory on S^2, opening the possibility of exact calculations. As a test of our proposal, we reproduce the leading Luscher correction at weak coupling to the generalized cusp anomalous dimension. This result is also checked against a genuine Feynman diagram approach in N=4 super Yang-Mills theory. Finally we study the cusp anomalous dimension in N=6 ABJ(M) theory, identifying a scaling limit in which the ladder diagrams dominate. The resummation is encoded into a Bethe-Salpeter equation that is mapped to a Schroedinger problem, exactly solvable due to the surprising supersymmetry of the effective Hamiltonian. In the ABJ case the solution implies the diagonalization of the U(N) and U(M) building blocks, suggesting the existence of two independent cusp anomalous dimensions and an unexpected exponentation structure for the related Wilson loops.
Resumo:
Block copolymers are versatile designer macromolecules where a “bottom-up” approach can be used to create tailored materials with unique properties. These simple building blocks allow us to create actuators that convert energy from a variety of sources (such as chemical, electrical and heat) into mechanical energy. In this review we will discuss the advantages and potential pitfalls of using block copolymers to create actuators, putting emphasis on the ways in which these materials can be synthesised and processed. Particular attention will be given to the theoretical background of microphase separation and how the phase diagram can be used during the design process of actuators. Different types of actuation will be discussed throughout.
Resumo:
The team, rather than the individual, is increasingly seen as the building block of organizations and a key source of competitive advantage. Despite this, not enough is understood about how to build successful teams in modern organizations. The Essentials of Teamworking broadens this understanding by offering a selection of key chapters on teamwork from the International Handbook of Organizational Teamwork and Cooperative Working. This concise paperback edition reveals the complexity of teamwork and offers empirically based guidance on how teamwork can be effectively developed in modern organizations. Bringing together leading international scholars, The Essentials of Teamworking offers challenging perspectives on teamwork that will inform future research and practice. It is an invaluable resource for professionals, researchers and students alike.
Resumo:
Peptidic Nucleic Acids (PNAs) are achiral, uncharged nucleic add mimetics, with a novel backbone composed of N-(2-aminoethyl)glycine units attached to the DNA bases through carboxymethylene linkers. With the aim of extending and improving upon the molecular recognition properties of PNAs, the aim of this work was to synthesjse PNA building block intermediates containing a series of substituted purine bases for subsequent use in automated PNA synthesis. Four purine bases: 2,6~diaminopurine (D), isoGuanine (isoG), xanthine (X) and hypoxanthine (H) were identified for incorporation into PNAs targeted to DNA, with the promise of increased hybrid stability over extended pH ranges together with improvements over the use of adenine (A) in duplex formation, and cytosine (C) in triplex formation. A reliable, high-yielding synthesis of the PNA backbone component N -('2- butyloxycarbonyl-aminoethyl)glycinate ethyl ester was establishecl. The precursor N~(2-butyloxycarbonyl)amino acetonitrile was crystallised and analysed by X-ray crystallography for the first time. An excellent refinement (R = 0.0276) was attained for this structure, allowing comparisons with known analogues. Although chemical synthesis of pure, fully-characterised PNA monomers was not achieved, chemical synthesis of PNA building blocks composed of diaminopurine, xanthine and hypoxanthine was completely successful. In parallel, a second objective of this work was to characterise and evaluate novel crystalline intermediates, which formed a new series of substituted purine bases, generated by attaching alkyl substituents at the N9 or N7 sites of purine bases. Crystallographic analysis was undertaken to probe the regiochemistry of isomers, and to reveal interesting structural features of the new series of similarly-substituted purine bases. The attainment of the versatile synthetic intermediate 2,6-dichloro~9- (carboxymethyl)purine ethyl ester, and its homologous regioisomers 6-chloro~9- (carboxymethyl)purine ethyl ester and 6-chloro-7-(carboxymethyl)purine ethyl ester, necessitated the use of X-ray crystallographic analysis for unambiguous structural assignment. Successful refinement of the disordered 2,6-diamino-9-(carboxymethyl) purine ethyl ester allowed comparison with the reported structure of the adenine analogue, ethyl adenin-9-yl acetate. Replacement of the chloro moieties with amino, azido and methoxy groups expanded the internal angles at their point of attachment to the purine ring. Crystallographic analysis played a pivotal role towards confirming the identity of the peralkylated hypoxanthine derivative diethyl 6-oxo-6,7-dihydro-3H-purlne~3,7~djacetate, where two ethyl side chains were found to attach at N3 and N7,
Resumo:
The new technology of combinational chemistry has been introduced to pharmaceutical companies, improving and making more efficient the process of drug discovery. Automated combinatorial chemistry in the solution-phase has been used to prepare a large number of compounds of anti-cancer screening. A library of caffeic acid derivatives has been prepared by the Knoevenagel condensation of aldehyde and active methylene reagents. These products have been screened against two murine adenocarcinoma cell lines (MAC) which are generally refractive to standard cytotoxic agents. The target of anti-proliferative action was the 12- and 15-lipoxygenase enzymes upon which these tumour cell lines have been shown to be dependent for proliferation and metastasis. Compounds were compared to a standard lipoxygenase inhibitor and if found to be active anti-proliferative agents were tested for their general cytotoxicity and lipoxygenase inhibition. A solid-phase bound catalyst, piperazinomethyl polystyrene, was devised and prepared for the improved generation of Knoevenagel condensation products. This piperazinomethyl polystyrene was compared to the traditional liquid catalyst, piperidine, and was found to reduce the amount of by-products formed during reaction and had the advantage of easy removal from the reaction. 13C NMR has been used to determine the E/Z stereochemistry of Knoevenagel condensation products. Soluble polymers have been prepared containing different building blocks pendant to the polymer backbone. Aldehyde building blocks incorporated into the polymer structure have been subjected to the Knoevenagel condensation. Cleavage of the resultant pendant molecules has proved that soluble linear polymers have the potential to generate combinatorial mixtures of known composition for biological testing. Novel catechol derivatives have been prepared by traditional solution-phase chemistry with the intention of transferring their synthesis to a solid-phase support. Catechol derivatives prepared were found to be active inhibitors of lipoxygenase. Soluble linear supports for the preparation of these active compounds were designed and tested. The aim was to develop a support suitable for the automated synthesis of libraries of catechol derivatives for biological screening.