873 resultados para bare public-key model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. The habitat components determining the structure of bee communities are well known when considering foraging resources; however, there is little data with respect to the role of nesting resources. 2. As a model system this study uses 21 diverse bee communities in a Mediterranean landscape comprising a variety of habitats regenerating after fire. The findings clearly demonstrate that a variety of nesting substrates and nest building materials have key roles in organising the composition of bee communities. 3. The availability of bare ground and potential nesting cavities were the two primary factors influencing the structure of the entire bee community, the composition of guilds, and also the relative abundance of the dominant species. Other nesting resources shown to be important include availability of steep and sloping ground, abundance of plant species providing pithy stems, and the occurrence of pre-existing burrows. 4. Nesting resource availability and guild structure varied markedly across habitats in different stages of post-fire regeneration; however, in all cases, nest sites and nesting resources were important determinants of bee community structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A size-structured plant population model is developed to study the evolution of pathogen-induced leaf shedding under various environmental conditions. The evolutionary stable strategy (ESS) of the leaf shedding rate is determined for two scenarios: i) a constant leaf shedding strategy and ii) an infection load driven leaf shedding strategy. The model predicts that ESS leaf shedding rates increase with nutrient availability. No effect of plant density on the ESS leaf shedding rate is found even though disease severity increases with plant density. When auto-infection, that is increased infection due to spores produced on the plant itself, plays a key role in further disease increase on the plant, shedding leaves removes disease that would otherwise contribute to disease increase on the plant itself. Consequently leaf shedding responses to infections may evolve. When external infection, that is infection due to immigrant spores, is the key determinant, shedding a leaf does not reduce the force of infection on the leaf shedding plant. In this case leaf shedding will not evolve. Under a low external disease pressure adopting an infection driven leaf shedding strategy is more efficient than adopting a constant leaf shedding strategy, since a plant adopting an infection driven leaf shedding strategy does not shed any leaves in the absence of infection, even when leaf shedding rates are high. A plant adopting a constant leaf shedding rate sheds the same amount of leaves regardless of the presence of infection. Based on the results we develop two hypotheses that can be tested if the appropriate plant material is available.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bovine tuberculosis (TB)is an important economic disease. Badgers (Meles meles) are the wildlife source implicated in many cattle outbreaks of TB in Britain, and extensive badger control is a controversial option to reduce the disease. A badger and cattle population model was developed, simulating TB epidemiology; badger ecology, including postcull social perturbation; and TB-related farm management. An economic cost-benefit module was integrated into the model to assess whether badger control offers economic benefits. Model results strongly indicate that although, if perturbation were restricted, extensive badger culling could reduce rates in cattle, overall an economic loss would be more likely than a benefit. Perturbation of the badger population was a key factor determining success or failure of control. The model highlighted some important knowledge gaps regarding both the spatial and temporal characteristics of perturbation that warrant further research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MOTIVATION: The accurate prediction of the quality of 3D models is a key component of successful protein tertiary structure prediction methods. Currently, clustering or consensus based Model Quality Assessment Programs (MQAPs) are the most accurate methods for predicting 3D model quality; however they are often CPU intensive as they carry out multiple structural alignments in order to compare numerous models. In this study, we describe ModFOLDclustQ - a novel MQAP that compares 3D models of proteins without the need for CPU intensive structural alignments by utilising the Q measure for model comparisons. The ModFOLDclustQ method is benchmarked against the top established methods in terms of both accuracy and speed. In addition, the ModFOLDclustQ scores are combined with those from our older ModFOLDclust method to form a new method, ModFOLDclust2, that aims to provide increased prediction accuracy with negligible computational overhead. RESULTS: The ModFOLDclustQ method is competitive with leading clustering based MQAPs for the prediction of global model quality, yet it is up to 150 times faster than the previous version of the ModFOLDclust method at comparing models of small proteins (<60 residues) and over 5 times faster at comparing models of large proteins (>800 residues). Furthermore, a significant improvement in accuracy can be gained over the previous clustering based MQAPs by combining the scores from ModFOLDclustQ and ModFOLDclust to form the new ModFOLDclust2 method, with little impact on the overall time taken for each prediction. AVAILABILITY: The ModFOLDclustQ and ModFOLDclust2 methods are available to download from: http://www.reading.ac.uk/bioinf/downloads/ CONTACT: l.j.mcguffin@reading.ac.uk.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multiscale modeling is emerging as one of the key challenges in mathematical biology. However, the recent rapid increase in the number of modeling methodologies being used to describe cell populations has raised a number of interesting questions. For example, at the cellular scale, how can the appropriate discrete cell-level model be identified in a given context? Additionally, how can the many phenomenological assumptions used in the derivation of models at the continuum scale be related to individual cell behavior? In order to begin to address such questions, we consider a discrete one-dimensional cell-based model in which cells are assumed to interact via linear springs. From the discrete equations of motion, the continuous Rouse [P. E. Rouse, J. Chem. Phys. 21, 1272 (1953)] model is obtained. This formalism readily allows the definition of a cell number density for which a nonlinear "fast" diffusion equation is derived. Excellent agreement is demonstrated between the continuum and discrete models. Subsequently, via the incorporation of cell division, we demonstrate that the derived nonlinear diffusion model is robust to the inclusion of more realistic biological detail. In the limit of stiff springs, where cells can be considered to be incompressible, we show that cell velocity can be directly related to cell production. This assumption is frequently made in the literature but our derivation places limits on its validity. Finally, the model is compared with a model of a similar form recently derived for a different discrete cell-based model and it is shown how the different diffusion coefficients can be understood in terms of the underlying assumptions about cell behavior in the respective discrete models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A size-structured plant population model is developed to study the evolution of pathogen-induced leaf shedding under various environmental conditions. The evolutionary stable strategy (ESS) of the leaf shedding rate is determined for two scenarios: i) a constant leaf shedding strategy and ii) an infection load driven leaf shedding strategy. The model predicts that ESS leaf shedding rates increase with nutrient availability. No effect of plant density on the ESS leaf shedding rate is found even though disease severity increases with plant density. When auto-infection, that is increased infection due to spores produced on the plant itself, plays a key role in further disease increase on the plant, shedding leaves removes disease that would otherwise contribute to disease increase on the plant itself. Consequently leaf shedding responses to infections may evolve. When external infection, that is infection due to immigrant spores, is the key determinant, shedding a leaf does not reduce the force of infection on the leaf shedding plant. In this case leaf shedding will not evolve. Under a low external disease pressure adopting an infection driven leaf shedding strategy is more efficient than adopting a constant leaf shedding strategy, since a plant adopting an infection driven leaf shedding strategy does not shed any leaves in the absence of infection, even when leaf shedding rates are high. A plant adopting a constant leaf shedding rate sheds the same amount of leaves regardless of the presence of infection. Based on the results we develop two hypotheses that can be tested if the appropriate plant material is available.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper highlights the key role played by solubility in influencing gelation and demonstrates that many facets of the gelation process depend on this vital parameter. In particular, we relate thermal stability (T-gel) and minimum gelation concentration (MGC) values of small-molecule gelation in terms of the solubility and cooperative self-assembly of gelator building blocks. By employing a van't Hoff analysis of solubility data, determined from simple NMR measurements, we are able to generate T-calc values that reflect the calculated temperature for complete solubilization of the networked gelator. The concentration dependence of T-calc allows the previously difficult to rationalize "plateau-region" thermal stability values to be elucidated in terms of gelator molecular design. This is demonstrated for a family of four gelators with lysine units attached to each end of an aliphatic diamine, with different peripheral groups (Z or Bee) in different locations on the periphery of the molecule. By tuning the peripheral protecting groups of the gelators, the solubility of the system is modified, which in turn controls the saturation point of the system and hence controls the concentration at which network formation takes place. We report that the critical concentration (C-crit) of gelator incorporated into the solid-phase sample-spanning network within the gel is invariant of gelator structural design. However, because some systems have higher solubilities, they are less effective gelators and require the application of higher total concentrations to achieve gelation, hence shedding light on the role of the MGC parameter in gelation. Furthermore, gelator structural design also modulates the level of cooperative self-assembly through solubility effects, as determined by applying a cooperative binding model to NMR data. Finally, the effect of gelator chemical design on the spatial organization of the networked gelator was probed by small-angle neutron and X-ray scattering (SANS/SAXS) on the native gel, and a tentative self-assembly model was proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple general route of obtaining very stable octacoordinated non-oxovanadium( IV) complexes of the general formula VL2 (where H2L is a tetradentate ONNO donor) is presented. Six such complexes (1-6) are adequately characterized by elemental analysis, mass spectrometry, and various spectroscopic techniques. One of these compounds (1) has been structurally characterized. The molecule has crystallographic 4 symmetry and has a dodecahedral structure existing in a tetragonal space group P4n2. The non-oxo character and VL2 stoichiometry for all of the complexes are established from analytical and mass spectrometric data. In addition, the non-oxo character is clearly indicated by the complete absence of the strong nu(v=o) band in the 925-1025 cm(-1) region, which is a signature of all oxovanadium species. The complexes are quite stable in open air in the solid state and in solution, a phenomenon rarely observed in non-oxovanadium(IV) or bare vanadium(IV) complexes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main objectives of this paper are to: firstly, identify key issues related to sustainable intelligent buildings (environmental, social, economic and technological factors); develop a conceptual model for the selection of the appropriate KPIs; secondly, test critically stakeholder's perceptions and values of selected KPIs intelligent buildings; and thirdly develop a new model for measuring the level of sustainability for sustainable intelligent buildings. This paper uses a consensus-based model (Sustainable Built Environment Tool- SuBETool), which is analysed using the analytical hierarchical process (AHP) for multi-criteria decision-making. The use of the multi-attribute model for priority setting in the sustainability assessment of intelligent buildings is introduced. The paper commences by reviewing the literature on sustainable intelligent buildings research and presents a pilot-study investigating the problems of complexity and subjectivity. This study is based upon a survey perceptions held by selected stakeholders and the value they attribute to selected KPIs. It is argued that the benefit of the new proposed model (SuBETool) is a ‘tool’ for ‘comparative’ rather than an absolute measurement. It has the potential to provide useful lessons from current sustainability assessment methods for strategic future of sustainable intelligent buildings in order to improve a building's performance and to deliver objective outcomes. Findings of this survey enrich the field of intelligent buildings in two ways. Firstly, it gives a detailed insight into the selection of sustainable building indicators, as well as their degree of importance. Secondly, it tesst critically stakeholder's perceptions and values of selected KPIs intelligent buildings. It is concluded that the priority levels for selected criteria is largely dependent on the integrated design team, which includes the client, architects, engineers and facilities managers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Irreversible binding of key flavour disulphides to ovalbumin has been shown previously to occur in model systems. The extent of binding is determined by the availability of the sulphydryl groups to participate in disulphide exchange, influenced either by pH, or the state of the protein (native or heat-denatured). In this study, two further proteins, one with sulphydryl groups available in the native state (beta-lactoglobulin) and one with no sulphydryl groups in the native state (lysozyme) were used to confirm this hypothesis. When the investigation was extended to real food systems, a similar effect was shown when a commercial meat flavouring containing disulphides was added to heat-denatured ovalbumin. Furthermore, comparison of the volatiles generated from onions, cooked either alone, or in the presence of meat, showed a significant reduction of key onion-derived disulphides when cooked in the presence of meat, and an even greater reduction of trisulphides. These findings may have implications for consumer acceptance of food products; where these compounds are used as flavourings or where they occur naturally.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acrylamide levels in cooked/processed food can be reduced by treatment with citric acid or glycine. In a potato model system cooked at 180 degrees C for 10-60 min, these treatments affected the volatile profiles. Strecker aldehydes and alkylpyrazines, key flavor compounds of cooked potato, were monitored. Citric acid limited the generation of volatiles, particularly the alkylpyrazines. Glycine increased the total volatile yield by promoting the formation of certain alkylpyrazines, namely, 2,3-dimethylpyrazine, trimethylpyrazine, 2-ethyl-3,5-dimethylpyrazine, tetramethylpyrazine, and 2,5-diethyl-3- methylpyrazine. However, the formation of other pyrazines and Strecker aldehydes was suppressed. It was proposed that the opposing effects of these treatments on total volatile yield may be used to best advantage by employing a combined treatment at lower concentrations, especially as both treatments were found to have an additive effect in reducing acrylamide. This would minimize the impact on flavor but still achieve the desired reduction in acrylamide levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of different sugars and glyoxal on the formation of acrylamide in low-moisture starch-based model systems was studied, and kinetic data were obtained. Glucose was more effective than fructose, tagatose, or maltose in acrylamide formation, whereas the importance of glyoxal as a key sugar fragmentation intermediate was confirmed. Glyoxal formation was greater in model systems containing asparagine and glucose rather than fructose. A solid phase microextraction GC-MS method was employed to determine quantitatively the formation of pyrazines in model reaction systems. Substituted pyrazine formation was more evident in model systems containing fructose; however, the unsubstituted homologue, which was the only pyrazine identified in the headspace of glyoxal-asparagine systems, was formed at higher yields when aldoses were used as the reducing sugar. Highly significant correlations were obtained for the relationship between pyrazine and acrylamide formation. The importance of the tautomerization of the asparagine-carbonyl decarboxylated Schiff base in the relative yields of pyrazines and acrylamide is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several studies have highlighted the importance of the cooling period in oil absorption in deep-fat fried products. Specifically, it has been established that the largest proportion of oil which ends up into the food, is sucked into the porous crust region after the fried product is removed from the oil bath, stressing the importance of this time interval. The main objective of this paper was to develop a predictive mechanistic model that can be used to understand the principles behind post-frying cooling oil absorption kinetics, which can also help identifying the key parameters that affect the final oil intake by the fried product. The model was developed for two different geometries, an infinite slab and an infinite cylinder, and was divided into two main sub-models, one describing the immersion frying period itself and the other describing the post-frying cooling period. The immersion frying period was described by a transient moving-front model that considered the movement of the crust/core interface, whereas post-frying cooling oil absorption was considered to be a pressure driven flow mediated by capillary forces. A key element in the model was the hypothesis that oil suction would only begin once a positive pressure driving force had developed. The mechanistic model was based on measurable physical and thermal properties, and process parameters with no need of empirical data fitting, and can be used to study oil absorption in any deep-fat fried product that satisfies the assumptions made.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new digital atlas of the geomorphology of the Namib Sand Sea in southern Africa has been developed. This atlas incorporates a number of databases including a digital elevation model (ASTER and SRTM) and other remote sensing databases that cover climate (ERA-40) and vegetation (PAL and GIMMS). A map of dune types in the Namib Sand Sea has been derived from Landsat and CNES/SPOT imagery. The atlas also includes a collation of geochronometric dates, largely derived from luminescence techniques, and a bibliographic survey of the research literature on the geomorphology of the Namib dune system. Together these databases provide valuable information that can be used as a starting point for tackling important questions about the development of the Namib and other sand seas in the past, present and future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

IPLV overall coefficient, presented by Air-Conditioning and Refrigeration Institute (ARI) of America, shows running/operation status of air-conditioning system host only. For overall operation coefficient, logical solution has not been developed, to reflect the whole air-conditioning system under part load. In this research undertaking, the running time proportions of air-conditioning systems under part load have been obtained through analysis on energy consumption data during practical operation in all public buildings in Chongqing. This was achieved by using analysis methods, based on the statistical energy consumption data distribution of public buildings month-by-month. Comparing with the weight number of IPLV, part load operation coefficient of air-conditioning system, based on this research, does not only show the status of system refrigerating host, but also reflects and calculate energy efficiency of the whole air-conditioning system. The coefficient results from the processing and analyzing of practical running data, shows the practical running status of area and building type (actual and objective) – not clear. The method is different from model analysis which gets IPLV weight number, in the sense that this method of coefficient results in both four equal proportions and also part load operation coefficient of air-conditioning system under any load rate as necessary.