957 resultados para antioxidants enzymes
Resumo:
Dihydroorotate dehydrogenase (DHODH) catalyzes the oxidation of dihydroorotate to orotate during the fourth step of the de novo pyrimidine synthesis pathway. In rapidly proliferating mammalian cells, pyrimidine salvage pathway is insufficient to overcome deficiencies in that pathway for nucleotide synthesis. Moreover, as certain parasites lack salvage enzymes, relying solely on the de novo pathway, DHODH inhibition has turned out as an efficient way to block pyrimidine biosynthesis. Escherichia coli DHODH (EcDHODH) is a class 2 DHODH, found associated to cytosolic membranes through an N-terminal extension. We used electronic spin resonance (ESR) to study the interaction of EcDHODH with vesicles of 1,2-dioleoyl-sn-glycero-phosphatidylcholine/detergent. Changes in vesicle dynamic structure induced by the enzyme were monitored via spin labels located at different positions of phospholipid derivatives. Two-component ESR spectra are obtained for labels 5- and 1 0-phosphatidylcholine in presence of EcDHODH, whereas other probes show a single-component spectrum. The appearance of an additional spectral component with features related to fast-motion regime of the probe is attributed to the formation of a defect-like structure in the membrane hydrophobic region. This is probably the mechanism used by the protein to capture quinones used as electron acceptors during catalysis. The use of specific spectral simulation routines allows us to characterize the ESR spectra in terms of changes in polarity and mobility around the spin-labeled phospholipids. We believe this is the first report of direct evidences concerning the binding of class 2 DHODH to membrane systems.
Resumo:
Previously, we have demonstrated that treatment of experimental diabetes with a decoction of Bauhinia forficata leaves is beneficial. In this study, we prepared a two-fold concentrate of this extract and tested its effects on physiological, biochemical and toxicity markers in streptozotocin-diabetic rats. Dried and ground leaves were extracted with warm 70% hydroethanol and the filtrate concentrated by evaporation at 50 degrees C. This solution was mixed with colloidal silicon dioxide (Tixosil-333 (R)) and dried in a spouted bed (BfT). Rats were treated with water, insulin and Tixosil particles at low or high doses, alone or coated with dried BfT. Animals were periodically weighed and monitored for water and food intake; urinary volume, glucose, urea and protein; blood glucose, serum lipids, liver toxicity markers transaminase and phosphatase and masses of adipose tissue and skeletal muscle. Insulin treatment gave best rat growth and lowest values for all other markers. No other treatment affected any diabetic marker, but the enzyme activities were changed by diabetes and BfT. Thus, BfT toxicity could arise from secondary products of plant constituents or Tixosil interaction. Therefore, BfT prepared in the spouted bed as described, is unsuitable for treatment of diabetes, which implies that the method of preparation of any medicine is critical for its efficacy and toxicity.
Resumo:
BACKGROUND: Age-related cataracts (ARCs) are an important cause of blindness in developing countries. Although antioxidants may be part of the body's defense to prevent ARC, environmental contaminants may contribute to cataractogenesis. In fish-eating populations of the lower Tapajos region, elevated exposure to mercury (Hg) has been reported, and blood levels of selenium (Se) range from normal to very high (> 1,000 mu g/L). OBJECTIVES: We examined ARCs in relation to these elements among adults (>= 40 years of age) from 12 riverside communities. METHODS: Participants (n = 211) provided blood samples and underwent an extensive ocular examination. Inductively coupled plasma mass spectrometry was used to assess Hg and Se in blood and plasma. RESULTS: One-third (n = 69; 32.7%) of the participants had ARC. Lower plasma Se (P-Se; < 25th percentile, 110 mu g/L) and higher blood Hg (B-Hg; >= 25th percentile, 25 mu g/L) were associated with a higher prevalence odds ratio (POR) of ARC [adjusted POR (95% confidence interval), 2.69 (1.11-6.56) and 4.45 (1.43-13.83), respectively]. Among participants with high P-Se, we observed a positive but nonsignificant association with high B-Hg exposure, whereas among those with low B-Hg, we observed no association for P-Se. However, compared with the optimum situation (high P-Se, low B-Hg), the POR for those with low P-Se and high B-Hg was 16.4 (3.0-87.9). This finding suggests a synergistic effect. CONCLUSION: Our results suggest that persons in this population with elevated Hg, the cataractogenic effects of Hg may be offset by Se. Because of the relatively small sample size and possible confounding by other dietary nutrients, additional studies with sufficient power to assess multiple nutrient and toxic interactions are required to confirm these findings.
Resumo:
The aim of this study was to test a novel phytocompound in an experimental model of antitumor-induced immunosuppression. Five groups of mice were considered: young (Y) and aged (A) that were given intraperitoneally 10 doses of cyclophosphamide (CPX, 25mg/kg/bw) or CPX plus (150 mg/kg/bw) of the nutraceutical DTS (Denshichi-Tochiu-Sen), and control. After sacrifice, macrophage chemotaxis and serum levels of IFN-gamma, IL-2, and GM-CSF were determined. Liver and urinary bladder were examined histologically, as were the liver and kidney for redox enzymes. CPX significantly decreased macrophage chemotaxis and all cytokines (p < 0.05, A >> Y). DTS restored macrophage function and cytokine concentration (p < 0.001) and partly improved the necro-inflammatory score and substance P receptor expression in the bladder and the redox status in liver and kidney (p < 0.05). Such data suggest that DTS effectively prevents CPX-induced immune suppression and oxidative-inflammatory damage, which are particularly enhanced in aged organisms.
Resumo:
Background: Chronic Chagas disease cardiomyopathy (CCC) is an inflammatory dilated cardiomyopathy with a worse prognosis than other cardiomyopathies. CCC occurs in 30 % of individuals infected with Trypanosoma cruzi, endemic in Latin America. Heart failure is associated with impaired energy metabolism, which may be correlated to contractile dysfunction. We thus analyzed the myocardial gene and protein expression, as well as activity, of key mitochondrial enzymes related to ATP production, in myocardial samples of end-stage CCC, idiopathic dilated (IDC) and ischemic (IC) cardiomyopathies. Methodology/Principal Findings: Myocardium homogenates from CCC (N = 5), IC (N = 5) and IDC (N = 5) patients, as well as from heart donors (N = 5) were analyzed for protein and mRNA expression of mitochondrial creatine kinase (CKMit) and muscular creatine kinase (CKM) and ATP synthase subunits aplha and beta by immunoblotting and by real-time RT-PCR. Total myocardial CK activity was also assessed. Protein levels of CKM and CK activity were reduced in all three cardiomyopathy groups. However, total CK activity, as well as ATP synthase alpha chain protein levels, were significantly lower in CCC samples than IC and IDC samples. CCC myocardium displayed selective reduction of protein levels and activity of enzymes crucial for maintaining cytoplasmic ATP levels. Conclusions/Significance: The selective impairment of the CK system may be associated to the loss of inotropic reserve observed in CCC. Reduction of ATP synthase alpha levels is consistent with a decrease in myocardial ATP generation through oxidative phosphorylation. Together, these results suggest that the energetic deficit is more intense in the myocardium of CCC patients than in the other tested dilated cardiomyopathies.
Resumo:
Background: Metalloproteinase 2 (MMP-2) and tissue inhibitor of metalloproteinase 2 (TIMP-2) participate in the degeneration of the extracellular matrix and are associated with carcinogenesis. MMP-2 is one of the main metalloproteinases active in neoplasia and is a marker of the malignant phenotype. Since the biological behavior of medullary thyroid carcinoma (MTC) varies widely, the present study was undertaken to determine if there is a correlation between the clinical evolution of MTC and the immunohistochemically detected expression of these enzymes in thyroid surgical specimens containing MTC. If so, their expression would be a novel indicator of the prognosis of MTC. Methods: Thirty-seven patients with MTC who had undergone thyroid surgery were followed for an average of 73 months. Immunohistochemical staining for metalloproteinase-related enzymes was performed in surgical paraffin blocks. The clinical status of the patients after surgery and at the end of the study period was characterized to determine correlations between these and the immunohistochemical markers. A value of p < 0.05 was considered statistically significant. Results: At the end of the study period, 15 patients (40.5%) were alive and without evidence of MTC, 17 (45.9%) had persistent MTC, and 5 (13.5%) had a relapse of their neoplasia. Four patients (10.8%) died during the course of the study. There was a significant correlation (p = 0.0005) between the immunohistochemical staining for MMP-2 and the clinical condition of the patients at the end of the study period, and a correlation between the state of apparent cure compared to persistence of MTC after thyroid surgery (p = 0.0207). No significant correlations were observed between either TIMP-2 expression or immune marking of metastatic lymph nodes and the clinical variables studied. Conclusion: Immunohistochemical expression of MMP-2 in thyroid surgical specimens from patients with MTC is a novel indicator of the prognosis of this cancer.
Resumo:
Glutathione S-transferases (GSTs) constitute a superfamily of ubiquitous multifunctional enzymes that are involved in the cellular detoxification of a large number of endogenous and exogenous chemical agents that have electrophilic functional groups. People who have deficiencies in this family of genes are at increased risk of developing some types of tumors. We examined GSTP1 Ile105Val polymorphism using PCR-RFLP in 80 astrocytoma and glioblastoma samples. Patients who had the Val allele of the GSTP1 Ile105Val polymorphism had an increased risk of tumor development (odds ratio = 8.60; 95% confidence interval = 4.74-17.87; P < 0.001). Overall survival of patients did not differ significantly. We suggest that GSTP1 Ile105Val polymorphisms are involved in susceptibility to developing astrocytomas and glioblastomas.
Resumo:
A growing body of evidence has suggested that reactive oxygen species (ROS) may play an important role in the physiopathology of depression. Evidence has pointed to the beta-carboline harmine as a potential therapeutic target for the treatment of depression. The present study we evaluated the effects of acute and chronic administration of harmine (5, 10 and 15 mg/kg) and imipramine (10, 20 and 30 mg/kg) or saline in lipid and protein oxidation levels and superoxide dismutase (SOD) and catalase (CAT) activities in rat prefrontal cortex and hippocampus. Acute and chronic treatments with imipramine and harmine reduced lipid and protein oxidation, compared to control group in prefrontal cortex and hippocampus. The SOD and CAT activities increased with acute and chronic treatments with imipramine and harmine, compared to control group in prefrontal cortex and hippocampus. In conclusion, our results indicate positive effects of imipramine antidepressant and beta-carboline harmine of oxidative stress parameters, increasing SOD and CAT activities and decreasing lipid and protein oxidation.
Resumo:
Purpose. Histological aspects were considered in order to evaluate the in vivo photoprotective effect of a w/o microemulsion containing quercetin against UVB irradiation-induced dermal damages. The toxicity in cell culture and the potential skin irritation resulting from topical application of this formulation were investigated. Methods. Mouse dorsal surfaces were treated topically with 300 mg of the unloaded and quercetin-loaded (0.3%, w/w) microemulsions before and after exposure to UVB (2.87 J/cm(2)) irradiation. The untreated control groups irradiated and non-irradiated were also evaluated. UVB-induced histopathological changes as well as the photoprotective effect of this formulation were evaluated considering the parameters of infiltration of inflammatory cells, epidermis thickening (basale and spinosum layers) and collagen and elastic fiber contents. The cytotoxicity of the reported formulation was evaluated in L929 mice fibroblasts by MTT assay and the skin irritation was investigated after topical application of both unloaded and quercetin-loaded microemulsions once a day for 15 days. Results. The results demonstrated that the w/o microemulsion containing quercetin reduced the incidence of histological skin alterations, mainly the connective-tissue damage, induced by exposure to UVB irradiation. This suggests that protective effects of this formulation against UV-induced responses are not secondary to the interference of UV transmission (i.e., blocking the UVB radiation from being absorbed by the skin), as is usually implied with UVB absorbers and sunscreens, but is instead due to different biological effects of this flavonoid. Furthermore, by evaluating the cytotoxic effect on L929 cells and histological aspects such as infiltration of inflammatory cells and epidermis thickness of hairless mice, the present study also demonstrated the lack of toxicity of the proposed system. Conclusion. Based on these mice models, a detailed characterization of the w/o microemulsion incorporating quercetin effects as a photochemoprotective agent on human skin is presented.
Resumo:
The central role of reactive oxygen species (ROS) in osteoclast differentiation and in bone homeostasis prompted us to characterize the redox regulatory system of osteoclasts. In this report, we describe the expression and functional characterization of PAMM, a CXXC motif-containing peroxiredoxin 2-like protein expressed in bone marrow monocytes on stimulation with M-CSF and RANKL. Expression of wild-type (but not C to G mutants of the CXXC domain) PAMM in HEK293 cells results in an increased GSH/GSSG ratio, indicating a shift toward a more reduced environment. Expression of PAMM in RAW264.7 monocytes protected cells from hydrogen peroxide-induced oxidative stress, indicating that PAMM regulates cellular redox status. RANKL stimulation of RAW 264.7 cells caused a decrease in the GSH/GSSG ratio (reflecting a complementary increase in ROS). In addition, RANKL-induced osteoclast formation requires phosphorylation and translocation of NF-kappa B and c-Jun. In stably transfected RAW 264.7 cells, PAMM overexpression prevented the reduction of GSH/GSSG induced by RANKL. Concurrently, PAMM expression completely abolished RANKL-induced p100 NF-kappa B and c-Jun activation, as well as osteoclast formation. We conclude that PAMM is a redox regulatory protein that modulates osteoclast differentiation in vitro. PAMM expression may affect bone resorption in vivo and help to maintain bone mass. Antioxid. Redox Signal. 13, 27-37.
Resumo:
Dermcidin (DCD) is a human gene mapped to chromosome 12q13 region, which is co-amplified with multiple oncogenes with a well-established role in the growth, survival and progression of breast cancers. Here, we present a summary of a DNA microarray-based study that identified the genes that are up- and down-regulated in a human MDA-361 pLKO control clone and three clones expressing short hairpin RNA against three different regions of DCD mRNA. A list of 235 genes was differentially expressed among independent clones (> 3-fold change and P < 0.005). The gene expression of 208 was reduced and of 27 was increased in the three DCD-RNAi clones compared to pLKO control clone. The expression of 77 genes (37%) encoding for enzymes involved in amino acid metabolism, glucose metabolism and oxidoreductase activity and several genes required for cell survival and DNA repair were decreased. The expression of EGFR/ErbB-1 gene, an important predictor of outcome in breast cancer, was reduced together with the genes for betacellulin and amphiregulin, two known ligands of EGFR/ErbB receptors. Many of the 27 genes up-regulated by DCD-RNAi expression have not yet been fully characterized; among those with known function, we identified the calcium-calmodulin-dependent protein kinase-II delta and calcineurin A alpha. We compared 132 up-regulated and 12 down-regulated genes in our dataset with those genes up- and down-regulated by inhibitors targeting various signaling pathway components. The analysis showed that the genes in the DCD pathway are aligned with those functionally influenced by the drugs sirolimus, LY-294002 and wortmannin. Therefore, DCD may exert its function by activating the PI3K/AKT/mTOR signaling pathway. Together, these bioinformatic approaches suggest the involvement of DCD in the regulation of genes for breast cancer cell metabolism, proliferation and survival.
Resumo:
Solar radiation sustains and affects all life forms on Earth. In recent years, the increase in environmental levels of solar-UV radiation due to depletion of the stratospheric ozone layer, as a result of anthropogenic emission of destructive chemicals, has highlighted serious issues of social concern. This becomes still more dramatic in tropical and subtropical regions, where the intensity of solar radiation is higher. To better understand the impact of the harmful effects of solar-UV radiation on the DNA molecule, we developed a reliable biological monitoring system based on the exposure of plasmid DNA to artificial UV lamps and sunlight. The determination and quanti. cation of different types of UV photoproducts were performed through the use of specific DNA repair enzymes and antibodies. As expected, a significant number of CPDs and 6-4PPs was observed when the DNA-dosimeter system was exposed to increasing doses of UVB radiation. Moreover, CPDs could also be clearly detected in plasmid DNA when this system was exposed to either UVA or directly to sunlight. Interestingly, although less abundant, 6-4PPs and oxidative DNA damage were also generated after exposure to both UVA and sunlight. These results confirm the genotoxic potential of sunlight, reveal that UVA may also produce CPDs and 6-4PPs directly in naked DNA and demonstrate the applicability of a DNA-dosimeter system for monitoring the biological effects of solar-UV radiation.
Resumo:
It has been known for decades that some insect-infecting trypanosomatids can survive in culture without heme supplementation while others cannot, and that this capability is associated with the presence of a betaproteobacterial endosymbiont in the flagellate's cytoplasm. However, the specific mechanisms involved in this process remained obscure. In this work, we sequence and phylogenetically analyze the heme pathway genes from the symbionts and from their hosts, as well as from a number of heme synthesis-deficient Kinetoplastida. Our results show that the enzymes responsible for synthesis of heme are encoded on the symbiont genomes and produced in close cooperation with the flagellate host. Our evidence suggests that this synergistic relationship is the end result of a history of extensive gene loss and multiple lateral gene transfer events in different branches of the phylogeny of the Trypanosomatidae.
Resumo:
The control of molecular architectures has been a key factor for the use of Langmuir-Blodgett (LB) films in biosensors, especially because biomolecules can be immobilized with preserved activity. In this paper we investigated the incorporation of tyrosinase (Tyr) in mixed Langmuir films of arachidic acid (AA) and a lutetium bisphthalocyanine (LuPc(2)), which is confirmed by a large expansion in the surface pressure isotherm. These mixed films of AA-LuPc(2) + Tyr could be transferred onto ITO and Pt electrodes as indicated by FTIR and electrochemical measurements, and there was no need for crosslinking of the enzyme molecules to preserve their activity. Significantly, the activity of the immobilised Tyr was considerably higher than in previous work in the literature, which allowed Tyr-containing LB films to be used as highly sensitive voltammetric sensors to detect pyrogallol. Linear responses have been found up to 400 mu M, with a detection limit of 4.87 x 10(-2) mu M (n = 4) and a sensitivity of 1.54 mu A mu M(-1) cm(-2). In addition, the Hill coefficient (h = 1.27) indicates cooperation with LuPc(2) that also acts as a catalyst. The enhanced performance of the LB-based biosensor resulted therefore from a preserved activity of Tyr combined with the catalytic activity of LuPc(2), in a strategy that can be extended to other enzymes and analytes upon varying the LB film architecture.
Resumo:
The filamentous fungus Trichoderma harzianum has a considerable cellulolytic activity that is mediated by a complex of enzymes which are essential for the hydrolysis of microcrystalline cellulose. These enzymes were produced by the induction of T. harzianum with microcrystalline cellulose (Avicel) under submerged fermentation in a bioreactor. The catalytic core domain (CCD) of cellobiohydrolase I (CBHI) was purified from the extracellular extracts and submitted to robotic crystallization. Diffraction-quality CBHI CCD crystals were grown and an X-ray diffraction data set was collected under cryogenic conditions using a synchrotron-radiation source.