986 resultados para ZINC IONS
Resumo:
A simple method has been developed to assemble gold nanoparticles to generate 1D assemblies by the assistance of silver ions. The lengths of nanoparticle chains can be controlled by adjusting the content of silver ions in the system. The assembly procedure of gold nanoparticles chains requires no template. The gold nanoparticle chains were characterized using TEM and XPS techniques.
Resumo:
Reactions of Zn(BF4)(2) and pyridine-2,4-dicarboxylic acid (2,4-pydcH(2)) in the presence of 1,2-bis( 4-pyridyl) ethylene or 1,3-bis(4-pyridyl) propane under hydro(solvo) thermal conditions yielded two polymorphic metal-organic coordination polymers formulated as Zn-2(OH)(2)(2,4-pydc) (1 and 2). Polymorph 1 features a two-dimensional (2-D) layer-like structure that is constructed by 2,4-pydc ligands bridging between the Zn-OH-Zn double-chain units. Each single Zn-OH-Zn chain is composed of mu(2)-OH groups connecting trigonal bipyramidal and tetrahedral Zn centers. Polymorph 2 is a 3-D coordination polymer containing 2-D Zn-OH-Zn sheets that consist of mu(2)- and mu(3)-OH groups and trigonal bipyramidal Zn centers. The sheets are pillared by 2,4-pydc ligands to form an acentric structural architecture. 1 and 2 are rare examples that the two polymorphs exhibit a centrosymmetric 2-D coordination network and an acentric 3-D coordination network, respectively. The different structures lead to differences in photoluminescent properties and thermal stabilities for 1 and 2.
Resumo:
Five zinc (II) complexes (1-5) with 4 '-phenyl-2,2 ':6 ',2 ''-terpyridine (ptpy) derivatives as ligands have been synthesized and fully characterized. The para-position of phenyl in ptpy is substituted by the group (R), i.e. tert-butyl (t-Bu), hexyloxy (OHex), carbazole-9-yl (Cz), naphthalen-1-yl-phenyl-amine-N-yl (NPA) and diphenyl amine-N-yl (DPA), with different electron-donating ability. With increasing donor ability of the R, the emission color of the complexes in film was modulated from violet (392 nm) to reddish orange (604 nm). The photoexcited luminescence exhibits significant solvatochromism because the emission of the complexes involves the intra-ligand charge transfer (ILCT) excited state. The electrochemical investigations show that the complexes with stronger electro-donating substituent have lower oxidation potential and then higher HOMO level. The electroluminescence (EL) properties of these zinc (II) complexes were studied with the device structure of ITO/PEDOT/Zn (II) complex: PBD:PMMA/BCP/AlQ/ LiF/Al. Complexes 3, 4 and 5 exhibit EL wavelength at 552, 600 and 609 nm with maximum current efficiency of 5.28, 2.83 and 2.00 cd/A, respectively.
Resumo:
Negative differential resistance (NDR) and memory effect were observed in diodes based on 1,4-dibenzyl C60 (DBC) and zinc phthalocyanine doped polystyrene hybrid material. Certain negative starting sweeping voltages led to a reproducible NDR, making the hybrid material a promising candidate in memory devices. It was found that the introduction of DBC enhanced the ON/OFF current ratio and significantly improved the memory stability. The ON/OFF current ratio was up to 2 orders of magnitude. The write-read-erase-reread cycles were more than 10(6), and the retention time reached 10 000 s without current degradation.
Resumo:
The luminescence properties of CdSio(3):RE3+ phosphors doped with various rare earth ions are reported. The series of rare earth ions doped CdSiO3 phosphors are prepared by the conventional high-temperature solid-state method, and characterized by XRD and photoluminescence (PL) spectra. The results of XRD measurement indicate that the products fired under 1050 degreesC for 3 h have a good crystallization without any detectable amount of impure phase. The PL spectra measurement results show that CdSiO3 is a novel self-activated luminescent matrix. When rare earth ions such as Y3+, La3+, Gds(3+), Lus(3+), Ce3+, Nd3+, Ho3+, Era(3+), Tm3+ and Yb3+ are introduced into the CdSi03 host, one broadband centered at about 420 nm resulted from traps can be observed. In the case of other earth ions which show emissions at the visible spectrum region, such as Pr3+, Sm3+, Eu3+, Tb3+ and Dy3+, the mixture of their characteristic line emissions with the similar to 420 nm strong broadband luminescence results in various emitting colors. As a consequence, different emitting colors can be attairied via introducing certain appropriate active ions into the CdSiO3 matrix. In additional, this kind of phosphors shows good long-lasting properties when excited by UV light. All the results show that CdSiO3 is a potential luminance matrix.
Resumo:
The title bimetallic compound, [Yb-4(mu(3)-OH)(4)(C6H13NO2)(7)-(H2O)(7)][ZnCl4][ZnCl3(OH)]Cl-4.8H(2)O, was synthesized at near physiological pH (6.0). The compound exhibits some novel structural features, including an asymmetric [Yb-4(mu(3)-OH)(4)(L-leucine)(7)(H2O)(7)](8+) complex cation in which four OH groups act as bridging ligands, linking four Yb3+ cations into a Yb4O4 structural unit. Each pair of adjacent Yb3+ ions is further bridged by one carboxy group from a leucine ligand. Water molecules and a monodentate leucine ligand also coordinate to Yb3+ ions, completing their eight-coordinate square-antiprismatic coordination. The Yb-4(mu(3)-OH)(4)(L-leucine)(7)(H2O)(7)](8+) cation, the [ZnCl4](2-), [ZnCl3OH](2-) and Cl- anions, and the lattice water molecules are linked via hydrogen bonds.
Resumo:
With the presence of biopolymer-sodium alginate as additive, Eu-doped ZnO (zinc oxide) urchins consisting of nanorods were synthesized through a hydrothermal route. X-ray diffraction pattern makes evident the absence of phase other than wurtzite ZnO. Upon excited by 325 nm xenon laser, such nanostructured Eu-doped ZnO urchins emit white light, which originates from the luminescence of ZnO and the intra-4f transitions of Eu3+ ions. Besides acting as stabilizing agent, sodium alginate may also sensitize the Eu3+ ions in the nanostructures and facilitate the energy transfer from the host to Eu3+ ions. (c) 2006 American Institute of Physics.
Resumo:
Zinc oxide (ZnO) surfaces with controllable structures (i.e, microstructure, nanostructure, and micronanobinary structure) have been created by controlling pH at < 4 or > 10.5 in the Zn(gray) + H2O2 reaction. The resulting surface shows superhydrophobicity. It is found that the water contact angle (CA) of the surface with micronanobinary structure is greater than that of nanostructure and that of nanostructure is greater than that of the microstructure. Theoretical analysis is completely in agreement with the experimental results.
Resumo:
An experimentally simple and inexpensive catalyst system based on hexabutylguanidinium/ZnBr, has been developed for the coupling of carbon dioxide and epoxides to form cyclic carbonates with significant catalytic activity under mild reaction conditions without using additional organic solvents (e.g. the turnover frequencies (TOF, h(-1)) values as high as 6.6 x 10(3) h(-1) for styrene oxide and 1.01 x 10(4) h(-1) for epichlorohydrin). This catalyst system also offers the advantages of recyclability and reusability. Therefore, it is a very effective, environmentally benign, and simple catalytic process. The special steric and electrophilic characteristics of hexabutylguanidinium bromide ionic liquid result in the prominent performance of this novel catalyst system.
Resumo:
A multi-component substitution of Co and Ni was incorporated into ZnTiO3 to form pure hexagonal Zn1-x(Co1/2Ni1/2)xTiO(3) (x = 0,0.8,0.9,1.0) dielectric ceramic powders by a modified sol-gel route, following heat treatments at 600 degrees C for 3 h and at 800 degrees C for 6 h. Differential scanning calorimetry measurements revealed that the order of increasing thermal stability of solid solution compound Zn1-x(Co1/2Ni1/2)(x)TiO3 was ZnTiO3 (945 degrees C), Zn0.1Ni0.9TiO3 (1346 degrees C), Zn-0.1(Co1/2Ni1/2)(0.9)TiO3 (1390 degrees C), and Zn0.1Co0.9TiO3 (> 1400 degrees C). Both the dielectric constant and loss tangent reached a maximum at x = 0.8 and then decreased with solubility, x, and measurement frequency.
Resumo:
Bulk and nanoscale powders of YAG:Re (Re = Ce, Pr, Tb) were synthesized by solid-state and sol-gel method. The changes of spectra and energy level were studied. Compared with the bulk YAG:Re (Re = Ce, Pr, Tb) crystals, the lattice parameter of YAG:Re (Re = Ce, Pr, Tb) nanocrystals decreases. It is also found that the excitation peaks of 5d energy levels shift in nanocrystals. The physical reason for spectral and energy level changes is a comprehensive result from the shift of energy centroid of the 5d orbit, the Coulomb interaction between 4f and 5d electrons and the crystal field splitting of the 5d energy level.
Resumo:
A series of aryl hydroxylactams (2a, 2b, 2d-2g, 2i-2k, 2m, and 2n) was synthesized by partially reducing aryl cyclic imides in moderate to excellent yields with activated zinc dust alone in acetic acid. This method was regiospecific and can be employed as an alternative for reported methods to partially reduce aryl cyclic imides.
Resumo:
In this paper, the extractabilities of Cyanex 302 and purified Cyanex 302 (hereafter HBTMPTP or HA) in heptane have been compared by extracting the scandium, yttrium, lanthanum, and gadolinium from hydrochloric acid solutions. The roles of the different components in Cyanex 302 on lanthanum extraction have been analyzed. The result demonstrates that the Cyanex 302 has a higher extractability than HBTMPTP, which perhaps originates from the interaction among the components in Cyanex 302. Especially for R3PO, obviously synergistic effect can be observed in the lower pH range and extraction mechanism of lanthanum using the mixture of HBTMPTP and TOPO has been deduced to be:where (HA)(2) and B denote the dimeric form of HBTMPTP and TOPO, respectively. At the same time, the separation abilities of Cyanex 302 and HBTMPTP on the rare earth elements have been compared. Also, the effect of temperature on the extraction with Cyaenx 302, HBTMPTP and the mixture of HBTMPTP and TOPO has also been discussed with thermodynamic functions Delta H, Delta S, and Delta G calculated.
Resumo:
Three bidentate ligands, 4-phenyl-2-(2-pyridyl)-quinoline (ppq), 6-(carbazol-9-yl)-4-phenyl-2-(2-pyridyl)-quinoline (cpq) and 6-diphenylamino-4-phenyl-2-(2-pyridyl)-quinoline (dpq) and their zinc(II) complexes, have been designed and synthesized. The crystal structure of [Zn(ppq)(2)Cl]PF6 shows that the central zinc atom is coordinated with one chloride and four nitrogen atoms from two ligands. The introduction of an electron-donating substituent such as carbazole or an aromatic amine group at the 6-position of the quinoline moiety can generate colored tunable Zn complexes, and the photoluminescence (PL) wavelength was modulated from 418 nm for [Zn(ppq)(2)Cl]PF6 to 591 nm for [Zn(cpq)(2)Cl]PF6 and 638 nm for [Zn(dpq)(2)Cl]PF6 in CH2Cl2 solution. The electroluminescence spectrum of [Zn(dpq)(2)Cl]PF6 exhibits pure red light emission with the Commission Internationale de L'Eclairage (CIE) coordinates (0.63, 0.36) and a maximum at 648 nm.
Resumo:
In the title compound, [Zn(C8H4O4)(C17H10N4O)](n), the Zn-II atom is five-coordinated by two N atoms from the phenanthro-line-derived ligand and three O atoms from one bidentate and one monodentate benzene-1,2-dicarboxylate (1,2-BDC) dianions in a distorted trigonal-bipyramidal geometry. The Zn-II atoms are bridged by the 1,2-BDC ligands to form a single-chain structure. Neighboring chains interact through pi-pi interactions, leading to a two-dimensional network.