907 resultados para Visual Odometry,Transformer,Deep learning
Resumo:
In this study, morphological changes in the optic nerve were determined by light microscopy in Wistar rats on an iron-deficient diet for 32 days or for 21 days followed by 10 days on an iron-recovery diet. The morphometric findings showed significantly fewer blood vessels and oligodendrocytes in the iron-deficient rats and iron-recovery rats than in the control group, as well as more astrocytes in the iron-recovery rats. Serum iron levels of the iron-deficient rats were significantly lower than those of the controls. On the other hand, iron-recovery rats had normal serum iron levels, but no change in the abnormal morphology of the myelinated axons and morphometric parameters. Our data indicate that iron is necessary for maintenance of the optic nerve cell structure, and morphological damage from iron-deficiency is not easily reverted by iron reposition.
Resumo:
The lateral part of intermediate layer of superior colliculus (SCI) is a critical substrate for successful predation by rats. Hunting-evoked expression of the activity marker Fos is concentrated in SCI while prey capture in rats with NMDA lesions in SCI is impaired. Particularly affected are rapid orienting and stereotyped sequences of actions associated with predation of fast moving prey. Such deficits are consistent with the view that the deep layers of SC are important for sensory guidance of movement. Although much of the relevant evidence involves visual control of movement, less is known about movement guidance by somatosensory input from vibrissae. Indeed, our impression is that prey contact with whiskers is a likely stimulus to trigger predation. Moreover, SCI receives whisker and orofacial somatosensory information directly from trigeminal complex, and indirectly from zona incerta, parvicelular reticular formation and somatosensory barrel cortex. To better understand sensory guidance of predation by vibrissal information we investigated prey capture by rats after whisker removal and the role of superior colliculus (SC) by comparing Fos expression after hunting with and without whiskers. Rats were allowed to hunt cockroaches, after which their whiskers were removed. Two days later they were allowed to hunt cockroaches again. Without whiskers the rats were less able to retain the cockroaches after capture and less able to pursue them in the event of the cockroach escaping. The predatory behaviour of rats with re-grown whiskers returned to normal. In parallel, Fos expression in SCI induced by predation was significantly reduced in whiskerless animals. We conclude that whiskers contribute to the efficiency of rat prey capture and that the loss of vibrissal input to SCI, as reflected by reduced Fos expression, could play a critical role in predatory deficits of whiskerless rats. (C) 2011 IBRO. Published by Elsevier Ltd. All rights reserved.