995 resultados para Vertical vehicle dynamics
Resumo:
IEEE Robótica 2007 - 7th Conference on Mobile Robots and Competitions, Paderne, Portugal 2007
Resumo:
OCEANS, 2001. MTS/IEEE Conference and Exhibition (Volume:2 )
Resumo:
A control framework enabling the automated maneuvering of a Remotely Operate Vehicle (ROV) is presented. The control architecture is structured according to the principle of composition of vehicle motions from a minimal set of elemental maneuvers that are designed and verified independently. The principled approach is based on distributed hybrid systems techniques, and spans integrated design, simulation and implementation as the same model is used throughout. Hybrid systems control techniques are used to synthesize the elemental maneuvers and to design protocols, which coordinate the execution of elemental maneuvers within a complex maneuver. This work is part of the Inspection of Underwater Structures (IES) project whose main objective is the implementation of a ROV-based system for the inspection of underwater structures.
Resumo:
Proceedings of the 10th Conference on Dynamical Systems Theory and Applications
Resumo:
Fractional Calculus (FC) goes back to the beginning of the theory of differential calculus. Nevertheless, the application of FC just emerged in the last two decades due to the progress in the area of nonlinear dynamics. This article discusses several applications of fractional calculus in science and engineering, namely: the control of heat systems, the tuning of PID controllers based on fractional calculus concepts and the dynamics in hexapod locomotion.
Resumo:
Fractional Calculus (FC) goes back to the beginning of the theory of differential calculus. Nevertheless, the application of FC just emerged in the last two decades, due to the progress in the area of chaos that revealed subtle relationships with the FC concepts. In the field of dynamical systems theory some work has been carried out but the proposed models and algorithms are still in a preliminary stage of establishment. Having these ideas in mind, the paper discusses a FC perspective in the study of the dynamics and control of some distributed parameter systems.
Resumo:
Nonlinear Dynamics, chaos, Control, and Their Applications to Engineering Sciences: Vol. 6 - Applications of nonlinear phenomena
Resumo:
Every year forest fires consume large areas, being a major concern in many countries like Australia, United States and Mediterranean Basin European Countries (e.g., Portugal, Spain, Italy and Greece). Understanding patterns of such events, in terms of size and spatiotemporal distributions, may help to take measures beforehand in view of possible hazards and decide strategies of fire prevention, detection and suppression. Traditional statistical tools have been used to study forest fires. Nevertheless, those tools might not be able to capture the main features of fires complex dynamics and to model fire behaviour [1]. Forest fires size-frequency distributions unveil long range correlations and long memory characteristics, which are typical of fractional order systems [2]. Those complex correlations are characterized by self-similarity and absence of characteristic length-scale, meaning that forest fires exhibit power-law (PL) behaviour. Forest fires have also been proved to exhibit time-clustering phenomena, with timescales of the order of few days [3]. In this paper, we study forest fires in the perspective of dynamical systems and fractional calculus (FC). Public domain forest fires catalogues, containing data of events occurred in Portugal, in the period 1980 up to 2011, are considered. The data is analysed in an annual basis, modelling the occurrences as sequences of Dirac impulses. The frequency spectra of such signals are determined using Fourier transforms, and approximated through PL trendlines. The PL parameters are then used to unveil the fractional-order dynamics characteristics of the data. To complement the analysis, correlation indices are used to compare and find possible relationships among the data. It is shown that the used approach can be useful to expose hidden patterns not captured by traditional tools.
Resumo:
The use of robotic vehicles for environmental modeling is discussed. This paper presents diverse results in autonomous marine missions with the ROAZ autonomous surface vehicle. The vehicle can perform autonomous missions while gathering marine data with high inertial and positioning precision. The underwater world is an, economical and environmental, asset that need new tools to study and preserve it. ROAZ is used in marine environment missions since it can sense and monitor the surface and underwater scenarios. Is equipped with a diverse set of sensors, cameras and underwater sonars that generate 3D environmental models. It is used for study the marine life and possible underwater wrecks that can pollute or be a danger to marine navigation. The 3D model and integration of multibeam and sidescan sonars represent a challenge in nowadays. Adding that it is important that robots can explore an area and make decisions based on their surroundings and goals. Regard that, autonomous robotic systems can relieve human beings of repetitive and dangerous tasks.
Resumo:
This work presents a low cost RTK-GPS system for localization of unmanned surface vehicles. The system is based on the use of standard low cost L1 band receivers and in the RTKlib open source software library. Mission scenarios with multiple robotic vehicles are addressed as the ones envisioned in the ICARUS search and rescue case where the possibility of having a moving RTK base on a large USV and multiple smaller vehicles acting as rovers in a local communication network allows for local relative localization with high quality. The approach is validated in operational conditions with results presented for moving base scenario. The system was implemented in the SWIFT USV with the ROAZ autonomous surface vehicle acting as a moving base. This setup allows for the performing of a missions in a wider range of environments and applications such as precise 3D environment modeling in contained areas and multiple robot operations.
Resumo:
Die Luftverschmutzung, die globale Erwärmung sowie die Verknappung der endlichen Ressourcen sind die größten Bedenken der vergangenen Jahrzehnte. Die Nachfrage nach jeglicher Mobilität steigt rapide. Dementsprechend bemüht ist die Automobilindustrie Lösungen für Mobilität unter dem Aspekt der Nachhaltigkeit und dem Umweltschutz anzubieten. Die Elektrifizierung hat sich hierbei als der beste Weg herausgestellt, um die Umweltprobleme sowie die Abhängigkeit von fossilen Brennstoffen zu lösen. Diese Arbeit soll einen Einblick über die Umweltauswirkungen des Hybridfahrzeuges Toyota Prius geben. Hierbei findet eine Gliederung in vier verschiedene Lebensphasen statt. Im Anschluss bietet die Sachbilanz die Möglichkeit die Umweltauswirkungen mit verschiedenen Antriebsmöglichkeiten und Brennstoffen zu vergleichen. Das Modell hat gezeigt, dass der Toyota Prius während der Nutzung einen hohen Einfluss auf das Treibhauspotenzial aufweist. Durch die Nutzung anderer Brennstoffe, wie beispielsweise Ethanol oder Methanol lassen sich die Auswirkungen am Treibhauspotenzial sowie der Verbrauch an abiotischen Ressourcen reduzieren. Vergleicht man die Elektromobilität mit der konventionellen, so ist festzustellen, dass diese Art der Mobilität die derzeit beste Möglichkeit zur Reduzierung der Umweltbelastungen bietet. Die Auswirkungen der Elektromobilität sind im hohen Maße abhängig von der Art des verwendeten Strommixes.
Resumo:
This paper presents the design of low cost, small autonomous surface vehicle for missions in the coastal waters and specifically for the challenging surf zone. The main objective of the vehicle design described in this paper is to address both the capability of operation at sea in relative challenging conditions and maintain a very low set of operational requirements (ease of deployment). This vehicle provides a first step towards being able to perform general purpose missions (such as data gathering or patrolling) and to at least in a relatively short distances to be able to be used in rescue operations (with very low handling requirements) such as carrying support to humans on the water. The USV is based on a commercially available fiber glass hull, it uses a directional waterjet powered by an electrical brushless motor for propulsion, thus without any protruding propeller reducing danger in rescue operations. Its small dimensions (1.5 m length) and weight allow versatility and ease of deployment. The vehicle design is described in this paper both from a hardware and software point of view. A characterization of the vehicle in terms of energy consumption and performance is provided both from test tank and operational scenario tests. An example application in search and rescue is also presented and discussed with the integration of this vehicle in the European ICARUS (7th framework) research project addressing the development and integration of robotic tools for large scale search and rescue operations.
Resumo:
Bipedal gaits have been classified on the basis of the group symmetry of the minimal network of identical differential equations (alias cells) required to model them. Primary bipedal gaits (e.g., walk, run) are characterized by dihedral symmetry, whereas secondary bipedal gaits (e.g., gallop-walk, gallop- run) are characterized by a lower, cyclic symmetry. This fact has been used in tests of human odometry (e.g., Turvey et al. in P Roy Soc Lond B Biol 276:4309–4314, 2009, J Exp Psychol Hum Percept Perform 38:1014–1025, 2012). Results suggest that when distance is measured and reported by gaits from the same symmetry class, primary and secondary gaits are comparable. Switching symmetry classes at report compresses (primary to secondary) or inflates (secondary to primary) measured distance, with the compression and inflation equal in magnitude. The present research (a) extends these findings from overground locomotion to treadmill locomotion and (b) assesses a dynamics of sequentially coupled measure and report phases, with relative velocity as an order parameter, or equilibrium state, and difference in symmetry class as an imperfection parameter, or detuning, of those dynamics. The results suggest that the symmetries and dynamics of distance measurement by the human odometer are the same whether the odometer is in motion relative to a stationary ground or stationary relative to a moving ground.
Resumo:
We study the peculiar dynamical features of a fractional derivative of complex-order network. The network is composed of two unidirectional rings of cells, coupled through a "buffer" cell. The network has a Z3 × Z5 cyclic symmetry group. The complex derivative Dα±jβ, with α, β ∈ R+ is a generalization of the concept of integer order derivative, where α = 1, β = 0. Each cell is modeled by the Chen oscillator. Numerical simulations of the coupled cell system associated with the network expose patterns such as equilibria, periodic orbits, relaxation oscillations, quasiperiodic motion, and chaos, in one or in two rings of cells. In addition, fixing β = 0.8, we perceive differences in the qualitative behavior of the system, as the parameter c ∈ [13, 24] of the Chen oscillator and/or the real part of the fractional derivative, α ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, are varied. Some patterns produced by the coupled system are constrained by the network architecture, but other features are only understood in the light of the internal dynamics of each cell, in this case, the Chen oscillator. What is more important, architecture and/or internal dynamics?
Resumo:
The painting activity is one of the most complex and important activities in automobile manufacturing. The inherent complexity of the painting activity and the frequent need for repainting usually turn the painting process into a bottleneck in automobile assembly plants, which is reflected in higher operating costs and longer overall cycle times. One possible approach for optimizing the performance of the paint shop is to improve the efficiency of the color planning. This can be accomplished by evaluating the relative merits of a set of vehicle painting plans. Since this problem has a multicriteria nature, we resort to the multicriteria decision analysis (MCDA) methodology to tackle it. A recent trend in the MCDA field is the development of hybrid approaches that are used to achieve operational synergies between different methods. Here we apply, for the first time, an integrated approach that combines the strengths of the analytic hierarchy process (AHP) and the Preference Ranking Organization METHod for Enrichment Evaluations (PROMETHEE), aided by Geometrical Analysis for Interactive Aid (GAIA), to the problem of assessing alternative vehicle painting plans. The management of the assembly plant found the results of value and is currently using them in order to schedule the painting activities such that an enhancement of the operational efficiency of the paint shop is obtained. This efficiency gain has allowed the management to bid for a new automobile model to be assembled at this specific plant.