934 resultados para Valve
Resumo:
Low-flow, low-gradient severe aortic stenosis (AS) is characterised by a small aortic valve area (AVA) and low mean gradient (MG) secondary to a low cardiac output and may occur in patients with either a preserved or reduced left ventricular ejection fraction (LVEF). Symptomatic patients presenting with low-flow, low-gradient severe AS have a dismal prognosis independent of baseline LVEF if managed conservatively and should therefore undergo aortic valve replacement if feasible. Transthoracic echocardiography (TTE) is the first-line investigation for the assessment of AS haemodynamic severity. However, when confronted with guideline-discordant AVA (small) and MG (low) values, there are several reasons other than severe AS combined with a low cardiac output which may lead to such a situation, including erroneous measurements, small body size, inherent inconsistencies in the guidelines' criteria, prolonged ejection time and aortic pseudostenosis. The distinction between these various entities poses a diagnostic challenge. However, it is important to make a distinction because each has very different implications in terms of risk stratification and therapeutic management. In such instances, cardiac catheterisation forms an integral part of the work-up of these patients in order to confirm or refute the echocardiographic findings to guide management decisions appropriately.
Resumo:
With the introduction of transcatheter structural heart therapies, cardiologists are increasingly aware of the importance of understanding anatomical details of left-sided heart structures. Understanding fluoroscopic cardiac anatomy can facilitate optimal positioning and deployment of prostheses during transcatheter valve repair/replacement, left atrial appendage occlusion, septal defect closure, and paravalvular leak closure. It is possible to use multislice computed tomography to determine optimal fluoroscopic viewing angles for such transcatheter therapies. The purpose of this paper is to describe how optimal fluoroscopic viewing angles of left-sided heart structures can be obtained using computed tomography. Two- and 3-chamber views are described and may become standard in the context of transcatheter structural heart interventions.
Resumo:
Transcatheter aortic valve implantation (TAVI) is a novel therapy, which has transformed the management of inoperable patients presenting with symptomatic severe aortic stenosis (AS). It is also a proven and less invasive alternative therapeutic option for high-risk symptomatic patients presenting with severe AS who are otherwise eligible for surgical aortic valve replacement. Patient age is not strictly a limitation for TAVI but since this procedure is currently restricted to high-risk and inoperable patients, it follows that most patients selected for TAVI are at an advanced age. Patient frailty and co-morbidities need to be assessed and a clinical judgment made on whether the patient will gain a measureable improvement in their quality of life. Risk stratification has assumed a central role in selecting suitable patients and surgical risk algorithms have proven helpful in this regard. However, limitations exist with these risk models, which must be understood in the context of TAVI. When making final treatment decisions, it is essential that a collaborative multidisciplinary "heart team" be involved and this is stressed in the most recent guidelines of the European Society of Cardiology. Choosing the best procedure is contingent upon anatomical feasibility, and multimodality imaging has emerged as an integral component of the pre-interventional screening process in this regard. The transfemoral route is now considered the default approach although vascular complications remain a concern. A minimal vessel diameter of 6 mm is required for currently commercial available vascular introducer sheaths. Several alternative access routes are available to choose from when confronted with difficult iliofemoral anatomy such as severe peripheral vascular disease or diffuse circumferential vessel calcification. The degree of aortic valve leaflet and annular calcification also needs to be assessed as the latter is a risk factor for post-procedural paravalvular aortic regurgitation. The ultimate goal of patient selection is to achieve the highest procedural success rate while minimizing complications and to choose patients most likely to derive tangible benefit from this procedure.
Resumo:
The cor triatriatum sinister is an uncommon congenital cardiac anomaly and reports in the literature are limited. It is often associated with other cardiac malformations, such as atrial septal defect, transposition of the great arteries, tetralogy of Fallot or atrioventricular septal defect. We present here a 6-year old boy who was diagnosed with cor triatriatum sinister, initially showing symptoms similar to mitral valve stenosis and congestive heart failure, and who underwent subsequent surgical correction using a left atrial approach. The fibromuscular membrane, separating the pulmonary veins from the mitral valve, was completely resected and postoperative echocardiography showed unobstructed pulmonary venous flow.
Resumo:
OBJECTIVES To report the mid-term results of aortic root replacement using a self-assembled biological composite graft, consisting of a vascular tube graft and a stented tissue valve. METHODS Between January 2005 and December 2011, 201 consecutive patients [median age 66 (interquartile range, IQR, 55-77) years, 31 female patients (15.4%), median logistic EuroSCORE 10 (IQR 6.8-23.2)] underwent aortic root replacement using a stented tissue valve for the following indications: annulo-aortic ectasia or ascending aortic aneurysm with aortic valve disease in 162 (76.8%) patients, active infective endocarditis in 18 (9.0%) and acute aortic dissection Stanford type A in 21 (10.4%). All patients underwent clinical and echocardiographic follow-up. We analysed survival and valve-related events. RESULTS The overall in-hospital mortality rate was 4.5%. One- and 5-year cardiac-related mortality rates were 3 and 6%, and overall survival was 95 ± 1.5 and 75 ± 3.6%, respectively. The rate of freedom from structural valve failure was 99% and 97 ± 0.4% at the 1- and 5-year follow-up, respectively. The incidence rates of prosthetic valve endocarditis were 3 and 4%, respectively. During a median follow-up of 28 (IQR 14-51) months, only 2 (1%) patients required valve-related redo surgery due to prosthetic valvular endocarditis and none suffered from thromboembolic events. One percent of patients showed structural valve deterioration without any clinical symptoms; none of the patients suffered greater than mild aortic regurgitation. CONCLUSIONS Aortic root replacement using a self-assembled biological composite graft is an interesting option. Haemodynamic results are excellent, with freedom from structured valve failure. Need for reoperation is extremely low, but long-term results are necessary to prove the durability of this concept.
Resumo:
BACKGROUND Stroke is a major cause of morbidity and mortality during open-heart surgery. Up to 60% of intraoperative cerebral events are emboli induced. This randomized, controlled, multicenter trial is the first human study evaluating the safety and efficacy of a novel aortic cannula producing simultaneous forward flow and backward suction for extracting solid and gaseous emboli from the ascending aorta and aortic arch upon their intraoperative release. METHODS Sixty-six patients (25 females; 68±10 years) undergoing elective aortic valve replacement surgery, with or without coronary artery bypass graft surgery, were randomized to the use of the CardioGard (CardioGard Medical, Or-Yehuda, Israel) Emboli Protection cannula ("treatment") or a standard ("control") aortic cannula. The primary endpoint was the volume of new brain lesions measured by diffusion-weighted magnetic resonance imaging (DW-MRI), performed preoperatively and postoperatively. Device safety was investigated by comparisons of complications rate, namely neurologic events, stroke, renal insufficiency and death. RESULTS Of 66 patients (34 in the treatment group), 51 completed the presurgery and postsurgery MRI (27 in the treatment group). The volume of new brain lesion for the treatment group was (mean±standard error of the mean) 44.00±64.00 versus 126.56±28.74 mm3 in the control group (p=0.004). Of the treatment group, 41% demonstrated new postoperative lesions versus 66% in the control group (p=0.03). The complication rate was comparable in both groups. CONCLUSIONS The CardioGard cannula is safe and efficient in use during open-heart surgery. Efficacy was demonstrated by the removal of a substantial amount of emboli, a significant reduction in the volume of new brain lesions, and the percentage of patients experiencing new brain lesions.
Resumo:
OBJECTIVE Sutureless valves are designed to facilitate surgical implantation, including less-invasive techniques in aortic valve replacement, by maintaining surgical precision of implantation compared with transcatheter techniques. Long-term clinical experience with sutureless valves is lacking. We report the 5-year follow-up results of an international, prospective, multicenter study evaluating the clinical performance and safety of the 3f Enable valve (Medtronic Inc, Minneapolis, Minn). METHODS Between March 2007 and December 2009, 141 patients (54 male; mean age, 76.1±5.7 years) undergoing aortic valve replacement with the 3f Enable valve were enrolled in 10 European sites. The mean follow-up was 2.76 years (range, 2 days to 5.1 years; total, 388.7 patient-years). Echocardiographic valvular hemodynamic and morphologic analyses were performed by an independent core laboratory. RESULTS The mean systolic gradient was 10.4±4.4 mm Hg at discharge and 7.7±4.1 mm Hg at 5 years. The mean effective orifice area was 1.7±0.5 cm2 at discharge and 1.6±0.2 cm2 at 5 years. Freedom from all-cause and valve-related mortality was 87.6%±2.9% and 96.8%±1.6% at 1 year (113 patients at risk) and 77.0%±7.5% and 93.8%±4.8% at 5 years (24 patients at risk), respectively. Six patients underwent reoperation (4 because of major paravalvular leakage and 2 because of endocarditis). Freedom from reoperation was 95.4%±1.9% at 1 year and 95.4%±6.1% at 5 years. No structural valve deterioration occurred during the follow-up period. CONCLUSIONS The sutureless 3f Enable valve represents a safe and effective treatment for aortic valve stenosis, providing an excellent hemodynamic profile. This study represents the longest follow-up study for a sutureless bioprosthesis. Sutureless valves may become an option for all patients with indicated biological aortic valve replacement.
Resumo:
Purpose: Traditionally, the proximal isovelocity surface area (PISA) is based on the assumption of a single hemisphere (hemispheric PISA), but this technique has not been validated for the quantification of mitral regurgitation (MR) with multiple jets. Methods: The left heart simulator was actuated by a pulsatile pump at various stroke amplitudes. The regurgitant volume (Rvol) passing through the mitral valve phantoms with single and double regurgitant orifices of varying size and interspace was quantified by a flowmeter as reference technique. Color Doppler 3-D full-volumes were obtained, and Rvol were derived from 2-D PISA surfaces on the basis of hemispheric and hemicylindric assumption with one base (partial hemicylindric PISA) or 2 bases (total hemicylindric PISA). Results: 72 regurgitant volumes (Rvol range: 8 to 76 ml/beat) were obtained. Hemispheric PISA Rvol correlated well with reference Rvol by one orifice (R²=0.97; bias -2.7±3.2ml), but less by ≥ one orifice (R²=0.89). When a fusion of two PISAs occured, addition of two hemispheric PISA overestimated Rvol (bias 9.1±12.2ml, fig.1), and single hemispheric PISA underestimated Rvol (bias -12.4±4.9ml). If an integrated approach was used (hemispheric in single orifice, total hemicylindric in two non-fused PISAs and partial hemicylindric in two fused PISAs), the correlation was R²=0.95, bias -1.6±5.6ml (fig.2). In the ROC analysis, the cutoff to detect ≥ moderate-to-severe Rvol (≥45ml) was 42ml (AUC 0.99, sens. 100%, spec. 93%). Conclusions: In MR with two regurgitant jets, the 2-D hemicylindric assumption of the PISA offers a better quantification of Rvol than the hemispheric assumption. Quantification of MR using 2-D PISA requires an integrated approach that considers number of regurgitant orifices and fusion of the PISAs.
Resumo:
Objective: Minimizing resection and preserving leaflet tissue has been previously shown to be beneficial for mitral valve function and leaflet kinematics after repair of acute posterior leaflet prolapse in porcine valves. We examined the effects of different additional methods of mitral valve repair (neochordoplasty, ring annuloplasty, edge-to-edge repair and triangular resection) on hemodynamics at different heart rates in an experimental model. Methods: Severe acute P2 prolapse was created in eight porcine mitral valves by resecting the posterior marginal chordae. Valve hemodynamics was quantified under pulsatile conditions in an in vitro heart simulator before and after surgical manipulation. Mitral regurgitation was corrected using four different methods of repair on the same valve: neochordoplasty with expanded polytetrafluoroethylene sutures alone and together with ring annuloplasty, edge-to-edge repair and triangular resection, both with non-restrictive annuloplasty. Residual mitral valve leak, trans-valvular pressure gradients, flow and cardiac output were measured at 60 and 80 beats/min. A validated statistical linear mixed model was used to analyze the effect of treatment. The p values were calculated using a two-sided Wald test. Results: Only neochordoplasty with expanded polytetrafluoroethylene sutures but without ring annuloplasty achieved similar hemodynamics compared to those of the native mitral valve (p range 0.071-0.901). Trans-valvular diastolic pressure gradients were within a physiologic range but significantly higher than those of the native valve following neochordoplasty with ring annuloplasty (p=0.000), triangular resection (p=0.000) and edge-to-edge repair (p=0.000). Neochordoplasty alone was significantly better in terms of hemodynamic than neochordoplasty with a ring annuloplasty (p=0.000). These values were stable regardless of heart rate or ring size. Conclusions: Neochordoplasty without ring annuloplasty is the only repair technique able to achieve almost native physiological hemodynamics after correction of leaflet prolapse in a porcine experimental model of acute chordal rupture.
Resumo:
Hintergund Seit mehr als 10 Jahren wird der kathetergestützte Aortenklappenersatz (Transkatheter-Aortenklappenimplantation, „transcatheter aortic valve implantation“, TAVI) durchgeführt. Bereits in der Anfangsphase haben sich eingriffstypische Komplikationen nach transfemoralem Zugang herauskristallisiert. Ziel der Arbeit Beispielhaft wird anhand von 4 Sektionsfällen beschrieben, wie die Indikationsstellung zur TAVI und die Vermeidbarkeit der Komplikation zu prüfen ist. Material und Methoden Bei einer 86-jährigen Frau war es im Rahmen eines Repositionsversuchs des Implantats zu einem Abriss der rechten Beckengefäße gekommen. Bei einer 82-jährigen Frau war es während der Intervention zu einem Einriss des Aortenklappenrings mit Perikardtamponade gekommen. Eine 89-jährige Frau erlitt während der Intervention eine gedeckte Aortenverletzung und war während der anschließenden operativen Versorgung des Defekts verstorben. Im vierten Fall war bei einer 83 Jahre alt gewordenen Patientin im Rahmen des transfemoralen Klappenersatzes die Positionierung der Klappe misslungen, und ventrikelwärts entwickelte sich eine Embolisation der entfalteten Klappe. Es wurde eine zweite gleichartige Klappe positioniert, die in der Aorta hielt. Ergebnisse Die Indikationsstellung zur TAVI war in den 4 Fällen der multimorbiden Patientinnen gerechtfertigt. Die Komplikationen waren sehr unterschiedlich und die Gefäßverletzungen in 2 Fällen aufgrund der begonnenen Operationen nicht mehr zu prüfen. Schlussfolgerungen Die Versorgung einer Komplikation ist beim indikationsgerechten Patientenkollektiv aufgrund der Multimorbidität extrem schwierig und mit zahlreichen weiteren Komplikationen behaftet. Schlüsselwörter Herzklappenerkrankungen – Herzklappenprothese – Minimalinvasive Verfahren – Behandlungsfehler – Inoperabilität
Resumo:
OBJECTIVE To validate a radioimmunoassay for measurement of procollagen type III amino terminal propeptide (PIIINP) concentrations in canine serum and bronchoalveolar lavage fluid (BALF) and investigate the effects of physiologic and pathologic conditions on PIIINP concentrations. SAMPLE POPULATION Sera from healthy adult (n = 70) and growing dogs (20) and dogs with chronic renal failure (CRF; 10), cardiomyopathy (CMP; 12), or degenerative valve disease (DVD; 26); and sera and BALF from dogs with chronic bronchopneumopathy (CBP; 15) and healthy control dogs (10 growing and 9 adult dogs). PROCEDURE A radioimmunoassay was validated, and a reference range for serum PIIINP (S-PIIINP) concentration was established. Effects of growth, age, sex, weight, CRF, and heart failure on S-PIIINP concentration were analyzed. In CBP-affected dogs, S-PIIINP and BALF-PIIINP concentrations were evaluated. RESULTS The radioimmunoassay had good sensitivity, linearity, precision, and reproducibility and reasonable accuracy for measurement of S-PIIINP and BALF-PIIINP concentrations. The S-PIIINP concentration reference range in adult dogs was 8.86 to 11.48 mug/L. Serum PIIINP concentration correlated with weight and age. Growing dogs had significantly higher S-PIIINP concentrations than adults, but concentrations in CRF-, CMP-, DVD-, or CBP-affected dogs were not significantly different from control values. Mean BALF-PIIINP concentration was significantly higher in CBP-affected dogs than in healthy adults. CONCLUSIONS AND CLINICAL RELEVANCE In dogs, renal or cardiac disease or CBP did not significantly affect S-PIIINP concentration; dogs with CBP had high BALF-PIIINP concentrations. Data suggest that the use of PIIINP as a marker of pathologic fibrosis might be limited in growing dogs.
Resumo:
BACKGROUND This study evaluated whether risk factors for sternal wound infections vary with the type of surgical procedure in cardiac operations. METHODS This was a university hospital surveillance study of 3,249 consecutive patients (28% women) from 2006 to 2010 (median age, 69 years [interquartile range, 60 to 76]; median additive European System for Cardiac Operative Risk Evaluation score, 5 [interquartile range, 3 to 8]) after (1) isolated coronary artery bypass grafting (CABG), (2) isolated valve repair or replacement, or (3) combined valve procedures and CABG. All other operations were excluded. Univariate and multivariate binary logistic regression were conducted to identify independent predictors for development of sternal wound infections. RESULTS We detected 122 sternal wound infections (3.8%) in 3,249 patients: 74 of 1,857 patients (4.0%) after CABG, 19 of 799 (2.4%) after valve operations, and 29 of 593 (4.9%) after combined procedures. In CABG patients, bilateral internal thoracic artery harvest, procedural duration exceeding 300 minutes, diabetes, obesity, chronic obstructive pulmonary disease, and female sex (model 1) were independent predictors for sternal wound infection. A second model (model 2), using the European System for Cardiac Operative Risk Evaluation, revealed bilateral internal thoracic artery harvest, diabetes, obesity, and the second and third quartiles of the European System for Cardiac Operative Risk Evaluation were independent predictors. In valve patients, model 1 showed only revision for bleeding as an independent predictor for sternal infection, and model 2 yielded both revision for bleeding and diabetes. For combined valve and CABG operations, both regression models demonstrated revision for bleeding and duration of operation exceeding 300 minutes were independent predictors for sternal infection. CONCLUSIONS Risk factors for sternal wound infections after cardiac operations vary with the type of surgical procedure. In patients undergoing valve operations or combined operations, procedure-related risk factors (revision for bleeding, duration of operation) independently predict infection. In patients undergoing CABG, not only procedure-related risk factors but also bilateral internal thoracic artery harvest and patient characteristics (diabetes, chronic obstructive pulmonary disease, obesity, female sex) are predictive of sternal wound infection. Preventive interventions may be justified according to the type of operation.
Resumo:
OBJECTIVES Long-term follow-up reports after implantation of the Shelhigh® (Shelhigh, Inc., NJ, USA) No-React® aortic valved conduit used for aortic root replacement do not exist. METHODS Between November 1998 and December 2007, the Shelhigh® No-React® aortic valved conduit was implanted in 291 consecutive patients with a mean age of 69.6 ± 9.1 years, and 33.7% were female (n = 98). Indications were annulo-aortic ectasia (n = 202), aortic valve stenosis combined with ascending aortic aneurysm (n = 67), acute type A aortic dissection (n = 29), endocarditis (n = 26) and other related pathologies (n = 48) including 62 patients with previous cardiac surgery. Data from two cardiac institutions were analysed retrospectively using SPSS (SPSS Software IBM, Inc., 2014, NY, USA). RESULTS Operative mortality was 10% (n = 29). Main cause of death was cardiac failure in 15 patients (51.8%), neurological events in 6 patients (20.7%), respiratory failure in 4 patients (13.8%), bleeding complications in 2 patients (6.9%) and gastrointestinal ischaemia in 2 cases (6.9%). There were 262 hospital survivors and all were entered in the follow-up study (100% complete). During the long-term follow-up (mean 70.3 ± 53.1 in months), a total of 126/262 patients (44.3%) died. Main causes of death in patients after discharge were cardiac (n = 37, 14.1%), neurological (n = 15, 5.7%) respiratory (n = 12, 4.6%), endocarditis (n = 12, 4.6%) and peripheral vascular disease (n = 5, 1.9%). In 29 (11.1%) patients, the cause of death could not be determined. Reoperation was required in 25 (8.6%) patients due to infection of the conduit (n = 9), aortoventricular disconnection (n = 4), pseudoaneurysm formation (n = 4) and structural valve degeneration (n = 8). Reoperations were performed 5.0 ± 3.8 (range 0.1-11.7) years after index surgery. CONCLUSIONS The Shelhigh® No-React® aortic valved conduit showed satisfactory short-term operative results. However, the long-term follow-up revealed a relatively high rate of deaths, which may be explained by the epidemiology of the patient group, but a substantial proportion of deaths could not be clarified. The overall rate of reoperation (8.6%) during the mid-term follow-up is worrisome and the failures due to aortoventricular disconnection, endocarditis and pseudoaneurysm formation remain unexplained. The redo-procedures were technically demanding. We recommend close follow-up of patients with the Shelhigh® No-React® aortic valved conduit, because besides classical structural valve degeneration, unexpected findings may be observed.
Resumo:
GOAL We present the development of a boneanchored port for the painless long-term hemodialytic treatment of patients with renal failure. This port is implanted behind the ear. METHODS The port was developed based on knowledge obtained from long-term experience with implantable hearing devices, which are firmly anchored to the bone behind the ear. This concept of bone anchoring was adapted to the requirements for a vascular access during hemodialysis. The investigational device is comprised of a base plate that is firmly fixed with bone screws to the bone behind the ear (temporal bone). A catheter leads from the base plate valve block through the internal jugular vein and into the right atrium. The valves are opened using a special disposable adapter, without any need to puncture the blood vessels. Between hemodialysis sessions the port is protected with a disposable cover. RESULTS Flow rate, leak tightness and purification were tested on mockups. Preoperative planning and the surgical procedure were verified in 15 anatomical human whole head specimens. CONCLUSION Preclinical evaluations demonstrated the technical feasibility and safety of the investigational device. SIGNIFICANCE Approximately 1.5 million people are treated with hemodialysis worldwide, and 25% of the overall cost of dialysis therapy results from vascular access problems. New approaches towards enhancing vascular access could potentially reduce the costs and complications of hemodialytic therapy.
Resumo:
This paper reviews the methods, benefits and challenges associated with the adoption and translation of computational fluid dynamics (CFD) modelling within cardiovascular medicine. CFD, a specialist area of mathematics and a branch of fluid mechanics, is used routinely in a diverse range of safety-critical engineering systems, which increasingly is being applied to the cardiovascular system. By facilitating rapid, economical, low-risk prototyping, CFD modelling has already revolutionised research and development of devices such as stents, valve prostheses, and ventricular assist devices. Combined with cardiovascular imaging, CFD simulation enables detailed characterisation of complex physiological pressure and flow fields and the computation of metrics which cannot be directly measured, for example, wall shear stress. CFD models are now being translated into clinical tools for physicians to use across the spectrum of coronary, valvular, congenital, myocardial and peripheral vascular diseases. CFD modelling is apposite for minimally-invasive patient assessment. Patient-specific (incorporating data unique to the individual) and multi-scale (combining models of different length- and time-scales) modelling enables individualised risk prediction and virtual treatment planning. This represents a significant departure from traditional dependence upon registry-based, population-averaged data. Model integration is progressively moving towards 'digital patient' or 'virtual physiological human' representations. When combined with population-scale numerical models, these models have the potential to reduce the cost, time and risk associated with clinical trials. The adoption of CFD modelling signals a new era in cardiovascular medicine. While potentially highly beneficial, a number of academic and commercial groups are addressing the associated methodological, regulatory, education- and service-related challenges.