921 resultados para Tumors in aminals.
Resumo:
In recent times, zebrafish has garnered lot of popularity as model organism to study human cancers. Despite high evolutionary divergence from humans, zebrafish develops almost all types of human tumors when induced. However, mechanistic details of tumor formation have remained largely unknown. Present study is aimed at analysis of repertoire of kinases in zebrafish proteome to provide insights into various cellular components. Annotation using highly sensitive remote homology detection methods revealed ``substantial expansion'' of Ser/Thr/Tyr kinase family in zebrafish compared to humans, constituting over 3% of proteome. Subsequent classification of kinases into subfamilies revealed presence of large number of CAMK group of kinases, with massive representation of PIM kinases, important for cell cycle regulation and growth. Extensive sequence comparison between human and zebrafish PIM kinases revealed high conservation of functionally important residues with a few organism specific variations. There are about 300 PIM kinases in zebrafish kinome, while human genome codes for only about 500 kinases altogether. PIM kinases have been implicated in various human cancers and are currently being targeted to explore their therapeutic potentials. Hence, in depth analysis of PIM kinases in zebrafish has opened up new avenues of research to verify the model organism status of zebrafish.
Resumo:
156 p. : graf.
Resumo:
Papillomaviruses (PVs) are widespread pathogens. However, the extent of PV infections in bats remains largely unknown. This work represents the first comprehensive study of PVs in Iberian bats. We identified four novel PVs in the mucosa of free-ranging Eptesicus serotinus (EserPV1, EserPV2, and EserPV3) and Rhinolophus ferrumequinum (RferPV1) individuals and analyzed their phylogenetic relationships within the viral family. We further assessed their prevalence in different populations of E. serotinus and its close relative E. isabellinus. Although it is frequent to read that PVs co-evolve with their host, that PVs are highly species-specific, and that PVs do not usually recombine, our results suggest otherwise. First, strict virus-host co-evolution is rejected by the existence of five, distantly related bat PV lineages and by the lack of congruence between bats and bat PVs phylogenies. Second, the ability of EserPV2 and EserPV3 to infect two different bat species (E. serotinus and E. isabellinus) argues against strict host specificity. Finally, the description of a second noncoding region in the RferPV1 genome reinforces the view of an increased susceptibility to recombination in the E2-L2 genomic region. These findings prompt the question of whether the prevailing paradigms regarding PVs evolution should be reconsidered.
Resumo:
Background: Cell-surface glycoproteins play critical roles in cell-to-cell recognition, signal transduction and regulation, thus being crucial in cell proliferation and cancer etiogenesis and development. DPP IV and NEP are ubiquitous glycopeptidases closely linked to tumor pathogenesis and development, and they are used as markers in some cancers. In the present study, the activity and protein and mRNA expression of these glycoproteins were analysed in a subset of clear-cell (CCRCC) and chromophobe (ChRCC) renal cell carcinomas, and in renal oncocytomas (RO). Methods: Peptidase activities were measured by conventional enzymatic assays with fluorogen-derived substrates. Gene expression was quantitatively determined by qRT-PCR and membrane-bound protein expression and distribution analysis was performed by specific immunostaining. Results: The activity of both glycoproteins was sharply decreased in the three histological types of renal tumors. Protein and mRNA expression was strongly downregulated in tumors from distal nephron (ChRCC and RO). Moreover, soluble DPP IV activity positively correlated with the aggressiveness of CCRCCs (higher activities in high grade tumors). Conclusions: These results support the pivotal role for DPP IV and NEP in the malignant transformation pathways and point to these peptidases as potential diagnostic markers.
Resumo:
Colorectal cancer is one of the most frequent neoplasms and an important cause of mortality in the developed world. Mendelian syndromes account for about 5% of the total burden of CRC, being Lynch syndrome and familial adenomatous polyposis the most common forms. Lynch syndrome tumors develop mainly as a consequence of defective DNA mismatch repair associated with germline mutations in MLH1, MSH2, MSH6 and PMS2. A significant proportion of variants identified by screening these genes correspond to missense or noncoding changes without a clear pathogenic consequence, and they are designated as "variants of uncertain significance'', being the c.1852_1853delinsGC (p.K618A) variant in the MLH1 gene a clear example. The implication of this variant as a low-penetrance risk variant for CRC was assessed in the present study by performing a case-control study within a large cohort from the COGENT consortium-COST Action BM1206 including 18,723 individuals (8,055 colorectal cancer cases and 10,668 controls) and a case-only genotype-phenotype correlation with several clinical and pathological characteristics restricted to the Epicolon cohort. Our results showed no involvement of this variant as a low-penetrance variant for colorectal cancer genetic susceptibility and no association with any clinical and pathological characteristics including family history for this neoplasm or Lynch syndrome.
Resumo:
While TRAIL is a promising anticancer agent due to its ability to selectively induce apoptosis in neoplastic cells, many tumors, including pancreatic ductal adenocarcinoma (PDA), display intrinsic resistance, highlighting the need for TRAIL-sensitizing agents. Here we report that TRAIL-induced apoptosis in PDA cell lines is enhanced by pharmacological inhibition of glycogen synthase kinase-3 (GSK-3) or by shRNA-mediated depletion of either GSK-3 alpha or GSK-3 beta. In contrast, depletion of GSK-3 beta, but not GSK-3 alpha, sensitized PDA cell lines to TNF alpha-induced cell death. Further experiments demonstrated that TNF alpha-stimulated I kappa B alpha phosphorylation and degradation as well as p65 nuclear translocation were normal in GSK-3 beta-deficient MEFs. Nonetheless, inhibition of GSK-3 beta function in MEFs or PDA cell lines impaired the expression of the NF-kappa B target genes Bcl-xL and cIAP2, but not I kappa B alpha. Significantly, the expression of Bcl-xL and cIAP2 could be reestablished by expression of GSK-3 beta targeted to the nucleus but not GSK-3 beta targeted to the cytoplasm, suggesting that GSK-3 beta regulates NF-kappa B function within the nucleus. Consistent with this notion, chromatin immunoprecipitation demonstrated that GSK-3 inhibition resulted in either decreased p65 binding to the promoter of BIR3, which encodes cIAP2, or increased p50 binding as well as recruitment of SIRT1 and HDAC3 to the promoter of BCL2L1, which encodes Bcl-xL. Importantly, depletion of Bcl-xL but not cIAP2, mimicked the sensitizing effect of GSK-3 inhibition on TRAIL-induced apoptosis, whereas Bcl-xL overexpression ameliorated the sensitization by GSK-3 inhibition. These results not only suggest that GSK-3 beta overexpression and nuclear localization contribute to TNF alpha and TRAIL resistance via anti-apoptotic NF-kappa B genes such as Bcl-xL, but also provide a rationale for further exploration of GSK-3 inhibitors combined with TRAIL for the treatment of PDA.
Resumo:
Papillomaviruses (PVs) are widespread pathogens. However, the extent of PV infections in bats remains largely unknown. This work represents the first comprehensive study of PVs in Iberian bats. We identified four novel PVs in the mucosa of free-ranging Eptesicus serotinus (EserPV1, EserPV2, and EserPV3) and Rhinolophus ferrumequinum (RferPV1) individuals and analyzed their phylogenetic relationships within the viral family. We further assessed their prevalence in different populations of E. serotinus and its close relative E. isabellinus. Although it is frequent to read that PVs co-evolve with their host, that PVs are highly species-specific, and that PVs do not usually recombine, our results suggest otherwise. First, strict virus-host co-evolution is rejected by the existence of five, distantly related bat PV lineages and by the lack of congruence between bats and bat PVs phylogenies. Second, the ability of EserPV2 and EserPV3 to infect two different bat species (E. serotinus and E. isabellinus) argues against strict host specificity. Finally, the description of a second noncoding region in the RferPV1 genome reinforces the view of an increased susceptibility to recombination in the E2-L2 genomic region. These findings prompt the question of whether the prevailing paradigms regarding PVs evolution should be reconsidered.
Resumo:
Myotonic dystrophy type 1 (DM1 or Steinert's disease) and type 2 (DM2) are multisystem disorders of genetic origin. Progressive muscular weakness, atrophy and myotonia are the most prominent neuromuscular features of these diseases, while other clinical manifestations such as cardiomyopathy, insulin resistance and cataracts are also common. From a clinical perspective, most DM symptoms are interpreted as a result of an accelerated aging (cataracts, muscular weakness and atrophy, cognitive decline, metabolic dysfunction, etc.), including an increased risk of developing tumors. From this point of view, DM1 could be described as a progeroid syndrome since a notable age dependent dysfunction of all systems occurs. The underlying molecular disorder in DM1 consists of the existence of a pathological (CTG) triplet expansion in the 3' untranslated region (UTR) of the Dystrophia ll/Iyotonica Protein Kinase (DMPK) gene, whereas (CCTG)n repeats in the first intron of the Cellular Nucleic acid Binding Protein/Zinc Finger Protein 9 (CNBP/ZNF9) gene cause DM2. The expansions are transcribed into (CUG)n and (CCUG)n-containing RNA, respectively, which form secondary structures and sequester RNA binding proteins, such as the splicing factor muscleblind-like protein (MBNL), forming nuclear aggregates known as foci. Other splicing factors, such as CUGBP, are also disrupted, leading to a spliceopathy of a large number of downstream genes linked to the clinical features of these diseases. Skeletal muscle regeneration relies on muscle progenitor cells, known as satellite cells, which are activated after muscle damage, and which proliferate and differentiate to muscle cells, thus regenerating the damaged tissue. Satellite cell dysfunction seems to be a common feature of both age-dependent muscle degeneration (sarcopenia) and muscle wasting in DM and other muscle degenerative diseases. This review aims to describe the cellular, molecular and macrostructural processes involved in the muscular degeneration seen in DM patients, highlighting the similarities found with muscle aging.
Resumo:
Background: Intratumor heterogeneity may be responsible of the unpredictable aggressive clinical behavior that some clear cell renal cell carcinomas display. This clinical uncertainty may be caused by insufficient sampling, leaving out of histological analysis foci of high grade tumor areas. Although molecular approaches are providing important information on renal intratumor heterogeneity, a focus on this topic from the practicing pathologist' perspective is still pending. Methods: Four distant tumor areas of 40 organ-confined clear cell renal cell carcinomas were selected for histopathological and immunohistochemical evaluation. Tumor size, cell type (clear/granular), Fuhrman's grade, Staging, as well as immunostaining with Snail, ZEB1, Twist, Vimentin, E-cadherin, beta-catenin, PTEN, p-Akt, p110 alpha, and SETD2, were analyzed for intratumor heterogeneity using a classification and regression tree algorithm. Results: Cell type and Fuhrman's grade were heterogeneous in 12.5 and 60 % of the tumors, respectively. If cell type was homogeneous (clear cell) then the tumors were low-grade in 88.57 % of cases. Immunostaining heterogeneity was significant in the series and oscillated between 15 % for p110a and 80 % for Snail. When Snail immunostaining was homogeneous the tumor was histologically homogeneous in 100 % of cases. If Snail was heterogeneous, the tumor was heterogeneous in 75 % of the cases. Average tumor diameter was 4.3 cm. Tumors larger than 3.7 cm were heterogeneous for Vimentin immunostaining in 72.5 % of cases. Tumors displaying negative immunostaining for both ZEB1 and Twist were low grade in 100 % of the cases. Conclusions: Intratumor heterogeneity is a common event in clear cell renal cell carcinoma, which can be monitored by immunohistochemistry in routine practice. Snail seems to be particularly useful in the identification of intratumor heterogeneity. The suitability of current sampling protocols in renal cancer is discussed.
Resumo:
Os tumores de mama são caracterizados pela sua alta heterogeneidade. O câncer de mama é uma doença complexa, que possui o seu desenvolvimento fortemente influenciado por fatores ambientais, combinada a uma progressiva acumulação de mutações genéticas e desregulação epigenética de vias críticas. Alterações nos padrões de expressão gênica podem ser resultado de uma desregulação no controle de eventos epigenéticos, assim como, na regulação pós-transcricional pelo mecanismo de RNA de interferência endógeno via microRNA (miRNA). Estes eventos são capazes de levar à iniciação, à promoção e à manutenção da carcinogênese, como também ter implicações no desenvolvimento da resistência à terapia Os miRNAs formam uma classe de RNAs não codificantes, que durante os últimos anos surgiram como um dos principais reguladores da expressão gênica, através da sua capacidade de regular negativamente a atividade de RNAs mensageiros (RNAms) portadores de uma seqüencia parcialmente complementar. A importância da regulação mediada por miRNAs foi observada pela capacidade destas moléculas em regular uma vasta gama de processos biológicos incluindo a proliferação celular, diferenciação e a apoptose. Para avaliar a expressão de miRNAs durante a progressão tumoral, utilizamos como modelo experimental a série 21T que compreende 5 linhagens celulares originárias da mesma paciente diagnosticada com um tumor primário de mama do tipo ErbB2 e uma posterior metástase pulmonar. Essa série é composta pela linhagem obtida a partir do tecido normal 16N, pelas linhagens correspondentes ao carcinoma primário 21PT e 21NT e pelas linhagens obtidas um ano após o diagnóstico inicial, a partir da efusão pleural no sítio metastatico 21MT1 e 21MT2. O miRNAoma da série 21T revelou uma redução significativa nos níveis de miR-205 e nos níveis da proteina e-caderina e um enriquecimento do fator pró-metastático ZEB-1 nas células 21MT. Considerando a importância dos miRNAs na regulação da apoptose, e que a irradiação em diferentes espectros é comumente usada em procedimentos de diagnóstico como mamografia e na radioterapia, avaliamos a expressão de miRNAs após irradiação de alta e baixa energia e do tratamento doxorrubicina. Para os ensaios foram utilizados as linhagens não tumorais MCF-10A e HB-2 e as linhagens de carcinoma da mama MCF-7 e T-47D. Observou-se que raios-X de baixa energia são capazes de promover quebras na molécula do DNA e apoptose assim como, alterar sensivelmente miRNAs envolvidos nessas vias como o let-7a, miR-34a e miR-29b. No que diz respeito à resposta a danos genotóxicos, uma regulação positiva sobre a expressão de miR-29b, o qual em condições normais é regulado negativamente foi observada uma regulação positiva sobre miR-29b expressão após todos os tratamentos em células tumorais. Nossos resultados indicam que miR-29b é um possível biomarcador de estresse genotóxico e que miR-205 pode participar no potencial metastático das células 21T.
Resumo:
Tem sido descrito que o acúmulo de mutações em proto-oncogenes e genes supressores de tumor contribui para o direcionamento da célula à carcinogênese. Na maioria dos casos de câncer, as células apresentam proliferação descontrolada devido a alterações na expressão e/ou mutações de ciclinas, quinases dependentes de ciclinas e/ou inibidores do ciclo celular. Os tumores sólidos figuram entre o tipo de câncer mais incidente no mundo, sendo a quimioterapia e/ou hormônio-terapia, radioterapia e cirurgia os tratamentos mais indicados para estes tipos de tumores. Entretanto, o tratamento quimioterápico apresenta diversos efeitos colaterais e muitas vezes é ineficaz. Portanto, a busca por novas moléculas capazes de conter a proliferação destas células e com baixa toxicidade para o organismo se faz necessário. Este trabalho teve por objetivo avaliar a ação antitumoral in vitro de um novo composto sintético, a pterocarpanoquinona LQB118, sobre algumas linhagens tumorais humanas de alta prevalência e estudar alguns dos seus mecanismos de ação. As linhagens tumorais estudadas neste trabalho foram os adenocarcinomas de mama (MCF7) e próstata (PC-3), e carcinoma de pulmão (A549). A citotoxicidade foi avaliada pelo ensaio do MTT e a proliferação celular pela contagem de células vivas (exclusão do corante azul de tripan) e análise do ciclo celular (citometria de fluxo). A expressão gênica foi avaliada por RT-PCR e a apoptose foi avaliada por condensação da cromatina (microscopia de fluorescência-DAPI), fragmentação de DNA (eletroforese) e marcação com anexina V (citometria de fluxo). Das linhagens tumorais testadas, a de próstata (PC3) foi a que se mostrou mais sensível ao LQB 118, e em função deste resultado, os demais experimentos foram realizados com esta linhagem tumoral. O efeito citotóxico do LQB 118 se mostrou tempo e concentração dependente. Esta substância inibiu a proliferação celular e prejudicou a progressão do ciclo celular, acumulando células nas fases S e G2/M. Buscando esclarecer os mecanismos desta ação antitumoral, demonstrou-se que o LQB 118 inibe a expressão do mRNA do fator de transcrição c-Myc e das ciclinas D1 e B1, e induz a apoptose de tais células tumorais. Em suma, o LQB 118 é capaz de inibir a proliferação das células tumorais de próstata, alterando a expressão do mRNA de alguns genes reguladores do ciclo celular, resultando em interrupção do ciclo celular e indução de apoptose, indicando este composto como um potencial candidato a futuro medicamento no tratamento do câncer de próstata.
Resumo:
Tumor radiotherapy was a promising modality and over 100 years. Beams of heavy-charged particles show high RBE advantages and become the optimum tool for tumors therapy. Newly, along with the development of accelerators, scintillators, micro-electronics and computers, the heavy ion tumor therapy has been recognized more and developed.
Resumo:
Basic research related to heavy-ion cancer therapy has been done at the Institute of Modern Physics (IMP), Chinese Academy of Sciences since 1995. Now a plan of clinical trial with heavy ions has been launched at IMP. First, superficially placed tumor treatment with heavy ions is expected in the therapy terminal at the Heavy Ion Research Facility in Lanzhou (HIRFL), where carbon ion beams with energy up to 100 MeV/u can be supplied. The shallow-seated tumor therapy terminal at HIRFL is equipped with a passive beam delivery system including two orthogonal dipole magnets, which continuously scan pencil beams laterally and generate a broad and uniform irradiation field, a motor-driven energy degrader and a multi-leaf collimator. Two different types of range modulator, ripple filter and ridge filter with which Guassian-shaped physical dose and uniform biological effective dose Bragg peaks can be shaped for therapeutic ion beams respectively, have been designed and manufactured. Therefore, two-dimensional and three-dimensional conformal irradiations to tumors can be performed with the passive beam delivery system at the earlier therapy terminal. Both the conformal irradiation methods have been verified experimentally and carbon-ion conformal irradiations to patients with superficially placed tumors have been carried out at HIRFL since November 2006.
Resumo:
The passive beam delivery system in the superficially-placed tumor therapy terminal at Heavy Ion Researc h Facility in Lanzhou (HIRFL), which includes two orthogonal dipole magnets as scanning system, a motor-driven energy degrader as range-shifter, series of ridge filters as range modulator and a multileaf collimator, is introduced in detail. The capacities of its important components and the whole system have been verified experimentally. The tests of the ridge filter for extending Bragg peak and the range shifter for energy adjustment show both work well. To examine the passive beam delivery system, a beam shaping experiment were carried out, simulating a three-dimensional (3D) conformal irradiation to a tumor. The encouraging experimental result confirms that 3D layer-stacking conformal irradiation can be performed by means of the passive system. The validation of the beam delivery system establishes a substantial basis for upcoming clinical trial for superficially-placed tumors with heavy ions in the therapy terminal at HIRFL.
Resumo:
Within the framework of the pilot heavy-ion therapy facility at GSI equipped with an active beam delivery system of advanced raster scanning technique, a feasibility study on actively conformal heavy-ion irradiation to moving tumors has been experimentally conducted. Laterally, real-time corrections to the beam scanning parameters by the raster scanner, leading to an active beam tracing, compensate for the lateral motion of a target volume. Longitudinally, a mechanically driven wedge energy degrader (called depth scanner) is applied to adjust the beam energy so as to locate the high-dose Bragg peak of heavy ion beam to the slice under treatment for the moving target volume. It has been experimentally shown that compensations for lateral target motion by the raster scanner and longitudinal target shift by the depth scanner are feasible.