925 resultados para Surgical technique and possible pitfalls
Resumo:
A new solvatomorph of gallic acid was generated using chiral additive technique and characterized by single crystal and powder X-ray diffraction, C-13 NMR, IR spectroscopic techniques and thermal analysis. The supramolecular channels formed by hexameric motifs of gallic acid and solvent molecules contain highly disordered solvent molecules with fractional occupancies. © 2012 Elsevier B.V.
Resumo:
A novel method is proposed for fracture toughness determination of graded microstructurally complex (Pt,Ni)Al bond coats using edge-notched doubly clamped beams subjected to bending. Micron-scale beams are machined using the focused ion beam and loaded in bending under a nanoindenter. Failure loads gathered from the pop-ins in the load-displacement curves combined with XFEM analysis are used to calculate K-c at individual zones, free from substrate effects. The testing technique and sources of errors in measurement are described and possible micromechanisms of fracture in such heterogeneous coatings discussed.
Resumo:
Detecting and quantifying the presence of human-induced climate change in regional hydrology is important for studying the impacts of such changes on the water resources systems as well as for reliable future projections and policy making for adaptation. In this article a formal fingerprint-based detection and attribution analysis has been attempted to study the changes in the observed monsoon precipitation and streamflow in the rain-fed Mahanadi River Basin in India, considering the variability across different climate models. This is achieved through the use of observations, several climate model runs, a principal component analysis and regression based statistical downscaling technique, and a Genetic Programming based rainfall-runoff model. It is found that the decreases in observed hydrological variables across the second half of the 20th century lie outside the range that is expected from natural internal variability of climate alone at 95% statistical confidence level, for most of the climate models considered. For several climate models, such changes are consistent with those expected from anthropogenic emissions of greenhouse gases. However, unequivocal attribution to human-induced climate change cannot be claimed across all the climate models and uncertainties in our detection procedure, arising out of various sources including the use of models, cannot be ruled out. Changes in solar irradiance and volcanic activities are considered as other plausible natural external causes of climate change. Time evolution of the anthropogenic climate change ``signal'' in the hydrological observations, above the natural internal climate variability ``noise'' shows that the detection of the signal is achieved earlier in streamflow as compared to precipitation for most of the climate models, suggesting larger impacts of human-induced climate change on streamflow than precipitation at the river basin scale.
Resumo:
Bubble size in a gas liquid ejector has been measured using the image technique and analysed for estimation of Sauter mean diameter. The individual bubble diameter is estimated by considering the two dimensional contour of the ellipse, for the actual three dimensional ellipsoid in the system by equating the volume of the ellipsoid to that of the sphere. It is observed that the bubbles are of oblate and prolate shaped ellipsoid in this air water system. The bubble diameter is calculated based on this concept and the Sauter mean diameter is estimated. The error between these considerations is reported. The bubble size at different locations from the nozzle of the ejector is presented along with their percentage error which is around 18%.
Resumo:
We report the design and development of a self-contained multi-band receiver (MBR) system, intended for use with a single large aperture to facilitate sensitive and high time-resolution observations simultaneously in 10 discrete frequency bands sampling a wide spectral span (100-1500 MHz) in a nearly log-periodic fashion. The development of this system was primarily motivated by need for tomographic studies of pulsar polar emission regions. Although the system design is optimized for the primary goal, it is also suited for several other interesting astronomical investigations. The system consists of a dual-polarization multi-band feed (with discrete responses corresponding to the 10 bands pre-selected as relatively radio frequency interference free), a common wide-band radio frequency front-end, and independent back-end receiver chains for the 10 individual sub-bands. The raw voltage time sequences corresponding to 16 MHz bandwidth each for the two linear polarization channels and the 10 bands are recorded at the Nyquist rate simultaneously. We present the preliminary results from the tests and pulsar observations carried out with the Robert C. Byrd Green Bank Telescope using this receiver. The system performance implied by these results and possible improvements are also briefly discussed.
Resumo:
This study presents an overview of seismic microzonation and existing methodologies with a newly proposed methodology covering all aspects. Earlier seismic microzonation methods focused on parameters that affect the structure or foundation related problems. But seismic microzonation has generally been recognized as an important component of urban planning and disaster management. So seismic microzonation should evaluate all possible hazards due to earthquake and represent the same by spatial distribution. This paper presents a new methodology for seismic microzonation which has been generated based on location of study area and possible associated hazards. This new method consists of seven important steps with defined output for each step and these steps are linked with each other. Addressing one step and respective result may not be seismic microzonation, which is practiced widely. This paper also presents importance of geotechnical aspects in seismic microzonation and how geotechnical aspects affect the final map. For the case study, seismic hazard values at rock level are estimated considering the seismotectonic parameters of the region using deterministic and probabilistic seismic hazard analysis. Surface level hazard values are estimated considering site specific study and local site effects based on site classification/characterization. The liquefaction hazard is estimated using standard penetration test data. These hazard parameters are integrated in Geographical Information System (GIS) using Analytic Hierarchy Process (AHP) and used to estimate hazard index. Hazard index is arrived by following a multi-criteria evaluation technique - AHP, in which each theme and features have been assigned weights and then ranked respectively according to a consensus opinion about their relative significance to the seismic hazard. The hazard values are integrated through spatial union to obtain the deterministic microzonation map and probabilistic microzonation map for a specific return period. Seismological parameters are widely used for microzonation rather than geotechnical parameters. But studies show that the hazard index values are based on site specific geotechnical parameters.
Resumo:
In animal populations, the constraints of energy and time can cause intraspecific variation in foraging behaviour. The proximate developmental mediators of such variation are often the mechanisms underlying perception and associative learning. Here, experience-dependent changes in foraging behaviour and their consequences were investigated in an urban population of free-ranging dogs, Canis familiaris by continually challenging them with the task of food extraction from specially crafted packets. Typically, males and pregnant/lactating (PL) females extracted food using the sophisticated `gap widening' technique, whereas non-pregnant/non-lactating (NPNL) females, the relatively underdeveloped `rip opening' technique. In contrast to most males and PL females (and a few NPNL females) that repeatedly used the gap widening technique and improved their performance in food extraction with experience, most NPNL females (and a few males and PL females) non-preferentially used the two extraction techniques and did not improve over successive trials. Furthermore, the ability of dogs to sophisticatedly extract food was positively related to their ability to improve their performance with experience. Collectively, these findings demonstrate that factors such as sex and physiological state can cause differences among individuals in the likelihood of learning new information and hence, in the rate of resource acquisition and monopolization.
Resumo:
A computationally efficient Li-ion battery model has been proposed in this paper. The battery model utilizes the features of both analytical and electrical circuit modeling techniques. The model is simple as it does not involve a look-up table technique and fast as it does not include a polynomial function during computation. The internal voltage of the battery is modeled as a linear function of the state-of-charge of the battery. The internal resistance is experimentally determined and the optimal value of resistance is considered for modeling. Experimental and simulated data are compared to validate the accuracy of the model.
Resumo:
Silver Indium Di-sulfide (AgInS2) thin films are deposited using ultrasonic spray pyrolysis technique and the effect of substrate temperature (T-s) on film growth is studied by varying the temperature from 250 to 400 degrees C. From the structural analysis, orthorhombic AgInS2 phase is identified with preferential orientation along (002) plane. Further analysis with Raman revealed the coexistence of Cu-Au ordered and chalcopyrite structures in the films. Stoichiometric films are obtained at T-s of 300 degrees C. Above 300 degrees C, the film conductivity changed from p to n-type and the grain size decreased. The band gap of AgInS2 films varied from 1.55 to 1.89 eV and absorption coefficient is found to be >10(4) cm(-1). The films have sheet resistance in the range of 0.05 to 1300 Omega/square Both p and n type films are prepared through this technique without any external doping. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
We present new data on the strength of oceanic lithosphere along the Ninetyeast Ridge (NER) from two independent methods: spectral analysis (Bouguer coherence) using the fan wavelet transform technique, and spatial analysis (flexure inversion) with the convolution method. The two methods provide effective elastic thickness (T-e) patterns that broadly complement each other, and correlate well with known surface structures and regional-scale features. Furthermore, our study presents a new high resolution database on the Moho configuration, which obeys flexural isostasy, and exhibit regional correlations with the T-e variations. A continuous ridge structure with a much lower T-e value than that of normal oceanic lithosphere provides strong support for the hotspot theory. The derived T-e values vary over the northern (higher T-e similar to 10-20 km), central (anomalously low T-e similar to 0-5 km), and southern (low T-e similar to 5 km) segments of the NER. The lack of correlation of the T-e value with the progressive aging of the lithosphere implies differences in thermo-mechanical setting of the crust and underlying mantle in different parts of the NER, again indicating diversity in their evolution. The anomalously low T-e and deeper Moho (similar to 22 km) estimates of the central NER (between 0.5 degrees N and 17 degrees S) are attributed to the interaction of a hotspot with the Wharton spreading ridge that caused significant thermal rejuvenation and hence weakening of the lithosphere. The higher mechanical strength values in the northern NER (north of 0.5 degrees N) may support the idea of off-ridge emplacement and a relatively large plate motion at the time of volcanism. The low T-e and deeper Moho (similar to 22 km) estimates in the southern part (south of 17 degrees S) suggest that the lithosphere was weak and therefore younger at the time of volcanism, and this supports the idea that the southern NER was emplaced on the edge of the Indian plate. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Glasses and glass-nanocrystal (anatase TiO2) composites in BaO-TiO2-B2O3 system were fabricated by conventional melt-quenching technique and controlled heat treatment respectively. Poisson's ratio and Young's moduli were predicted through Makishima-Mackenzie theoretical equation for the as-quenched glasses by taking the four and three coordinated borons into account. Mechanical properties of the glasses and glass-nanocrystal composites were investigated in detail through nanoindentation and microindentation studies. Predicted Young's moduli of glasses were found to be in reasonable agreement with nanoindentation Measurements. Hardness and Young's modulus were enhanced with increasing volume fraction of nanocrystallites of TiO2 in glass matrix whereas fracture toughness was found susceptible to the surface features. The results were correlated to the structural units and nanocrystals present in the glasses. (C) 2013 Elsevier B.V. All rights reserved.
Missing (in-situ) snow cover data hampers climate change and runoff studies in the Greater Himalayas
Resumo:
The Himalayas are presently holding the largest ice masses outside the polar regions and thus (temporarily) store important freshwater resources. In contrast to the contemplation of glaciers, the role of runoff from snow cover has received comparably little attention in the past, although (i) its contribution is thought to be at least equally or even more important than that of ice melt in many Himalayan catchments and (ii) climate change is expected to have widespread and significant consequences on snowmelt runoff. Here, we show that change assessment of snowmelt runoff and its timing is not as straightforward as often postulated, mainly as larger partial pressure of H2O, CO2, CH4, and other greenhouse gases might increase net long-wave input for snowmelt quite significantly in a future atmosphere. In addition, changes in the short-wave energy balance such as the pollution of the snow cover through black carbon or the sensible or latent heat contribution to snowmelt are likely to alter future snowmelt and runoff characteristics as well. For the assessment of snow cover extent and depletion, but also for its monitoring over the extremely large areas of the Himalayas, remote sensing has been used in the past and is likely to become even more important in the future. However, for the calibration and validation of remotely-sensed data, and even-more so in light of possible changes in snow-cover energy balance, we strongly call for more in-situ measurements across the Himalayas, in particular for daily data on new snow and snow cover water equivalent, or the respective energy balance components. Moreover, data should be made accessible to the scientific community, so that the latter can more accurately estimate climate change impacts on Himalayan snow cover and possible consequences thereof on runoff. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Voltage Source Inverter (VSI) fed induction motors are widely used in variable speed applications. For inverters using fixed switching frequency PWM, the output harmonic spectra are located at a few discrete frequencies. The ac motordrives powered by these inverters cause acoustic noise. This paper proposes a new variable switching frequency pwm technique and compares its performance with constant switching frequency pwm technique. It is shown that the proposed technique leads to spread spectra of voltages and currents. Also this technique ensures that no lower order harmonics are present and the current THD is comparable to that of fixed switching frequency PWM and is even better for higher modulation indices.
Resumo:
Adsorption experiments of mixtures of long chain alkanes into silicalite under liquid phase conditions show selectivity inversion and azeotrope formation. These effects are due to the subtle interplay between the size of the adsorbed molecules and pore topology of the adsorbent. In this study, the selective uptake of lighter component during liquid phase adsorption of C/C and C/C n-alkane binary mixtures in the zeolite silicalite is understood through configurational bias grand-canonical Monte Carlo molecular simulation technique and a coarse-grained siting analysis. The simulations are conducted under conditions of low and intermediate levels of loading. The siting pattern of the adsorbates inside the zeolite pores explain the selectivity as seen in experiments.
Resumo:
The stress states in Si particles of cast Al-Si based alloys depend on its morphology and the heat treatment given to the alloy. The Si particles fracture less on modification and fracture more in the heat treated condition. An attempt has been made in this work to study the effect of heat treatment and Si modification on the stress states of the particles. Such understanding will be valuable for predicting the ductility of the alloy. The stress states of Si particles are estimated by Raman technique and compared with the microstructure-based FEM simulations. Combination of Electron Back-Scattered Diffraction (EBSD) and frequency shift, polarized micro-Raman technique is applied to determine the stress states in Si particles with (111) orientations. Stress states are measured in the as-received state and under uniaxial compression. The residual stress, the stress in the elastic-plastic regime and the stress which causes fracture of the particles is estimated by Raman technique. FEM study demonstrates that the stress distribution is uniform in modified Si, whereas the unmodified Si shows higher and more complex stress states. The onset of plastic flow is observed at sharp corners of the particles and is followed by localization of strain between particles. Clustering of particles generates more inhomogeneous plastic strain in the matrix. Particle stress estimated by Raman technique is in agreement with FEM calculations. (C) 2014 Elsevier B.V. All rights reserved.