889 resultados para Superoxide-dismutase
Resumo:
The reduction of oxygen in the presence of carbon dioxide has been investigated by cyclic voltammetry at a gold microdisk electrode in the two room-temperature ionic liquids 1-ethyl-3-methylimidazolium bis-(trifluoromethylsulfonyl)imide ([EMIM][N(Tf)(2)]) and hexyltriethylammonium bis(trifluoromethylsulfonyl)imide ([N-6222] [N(Tf)(2)]). With increasing levels of CO2, cyclic voltammetry shows an increase in the reductive wave and diminishing of the oxidative wave, indicating that the generated superoxide readily reacts with carbon dioxide. The kinetics of this reaction are investigated in both ionic liquids. The reaction was found to proceed via a DISP1 type mechanism in [EMIM][N(Tf)(2)] with an overall second-order rate constant of 1.4 +/- 0.4 x 10(3) M-1 s(-1). An ECE or DISP1 mechanism was determined to be the most likely pathway for the reaction in [N-6222][N(Tf)(2)], with an overall second-order rate constant of 1.72 +/- 0.45 x 10(3) m(-1) s(-1).
Resumo:
The electrochemical reduction of oxygen in two different room-temperature ionic liquids, 1-ethyl-3-methylimidazolium bis((trifluoromethyl)sulfonyl)imide ([EMIM][N(Tf)(2)]) and hexyltriethylammonium bis((trifluoromethyl)sulfonyl)imide ([N-6222][N(Tf)(2)]) was investigated by cyclic voltammetry at a gold microdisk electrode. Chronoamperometric measurements were made to determine the diffusion coefficient, D, and concentration, c, of the electroactive oxygen dissolved in the ionic liquid by fitting experimental transients to the Aoki model. [Aoki, K.; et al. J. Electroanal. Chem. 1981, 122, 19]. A theory and simulation designed for cyclic voltammetry at microdisk electrodes was then employed to determine the diffusion coefficient of the electrogenerated superoxide species, O-2(.-), as well as compute theoretical voltammograms to confirm the values of D and c for neutral oxygen obtained from the transients. As expected, the diffusion coefficient of the superoxide species was found to be smaller than that of the oxygen in both ionic liquids. The diffusion coefficients of O-2 and O-2(.-) in [N-6222][N(Tf)(2)], however, differ by more than a factor of 30 (D-O2 = 1.48 x 10(-10) m(2) s(-1), DO2.- = 4.66 x 10(-12) m(2) s(-1)), whereas they fall within the same order of magnitude in [EMIM][N(Tf)(2)] (D-O2 = 7.3 x 10(-10) m(2) s(-1), DO2.- = 2.7 x 10(-10) m(2) s(-1)). This difference in [N-6222][N(Tf)(2)] causes pronounced asymmetry in the concentration distributions of oxygen and superoxide, resulting in significant differences in the heights of the forward and back peaks in the cyclic voltammograms for the reduction of oxygen. This observation is most likely a result of the higher viscosity of [N-6222][N(Tf)(2)] in comparison to [EMIM][N(Tf)(2)], due to the structural differences in cationic component.
Resumo:
The reduction of oxygen was studied over a range of temperatures (298-318 K) in n-hexyltriethylammonium bis(trifluoromethanesulfonyl)imide, [N-6,N-2,N-2,N-2][NTf2], and 1-butyl-2,3-methylimidazolium bis(trifluoromethanesulfonyl)imide, [C(4)dmim][NTf2] on both gold and platinum microdisk electrodes, and the mechanism and electrode kinetics of the reaction investigated. Three different models were used to simulate the CVs, based on a simple electron transfer ('E'), an electron transfer coupled with a reversible homogeneous chemical step ('ECrev') and an electron transfer followed by adsorption of the reduction product ('EC(ads)'), and where appropriate, best fit parameters deduced, including the heterogeneous rate constant, formal electrode potential, transfer coefficient, and homogeneous rate constants for the ECrev mechanism, and adsorption/desorption rate constants for the EC(ads) mechanism. It was concluded from the good simulation fits on gold that a simple E process operates for the reduction of oxygen in [N-6,N-2,N-2,N-2][NTf2], and an ECrev process for [C(4)dmim][NTf2], with the chemical step involving the reversible formation of the O-2(center dot-)center dot center dot center dot [C(4)dmim](+) ion-pair. The E mechanism was found to loosely describe the reduction of oxygen in [N-6,N-2,N-2,N-2][NTf2] on platinum as the simulation fits were reasonable although not perfect, especially for the reverse wave. The electrochemical kinetics are slower on Pt, and observed broadening of the oxidation peak is likely due to the adsorption of superoxide on the electrode surface in a process more complex than simple Langmuirian. In [C(4)dmim][NTf2] the O-2(center dot-) predominantly ion-pairs with the solvent rather than adsorbs on the surface, and an ECrev quantitatively describes the reduction of oxygen on Pt also.
Resumo:
Generation of reactive oxygen species (ROS) is increasingly recognized as an important cellular process involved in numerous physiological and pathophysiological processes. Complex I ( NADH: ubiquinone oxidoreductase) is considered as one of the major sources of ROS within mitochondria. Yet, the exact site and mechanism of superoxide production by this large membrane-bound multiprotein complex has remained controversial. Here we show that isolated complex 1 from Yarrowia lipolytica forms superoxide at a rate of 0.15% of the rate measured for catalytic turnover. Superoxide production is not inhibited by ubiquinone analogous inhibitors. Because mutant complex I lacking a detectable iron-sulfur cluster N2 exhibited the same rate of ROS production, this terminal redox center could be excluded as a source of electrons. From the effect of different ubiquinone derivatives and pH on this side reaction of complex I we concluded that oxygen accepts electrons from FMNH2 or FMN semiquinone either directly or via more hydrophilic ubiquinone derivatives.
Resumo:
BACKGROUND:
Increased superoxide anion production increases oxidative stress and reduces nitric oxide bioactivity in vascular disease states. NAD(P)H oxidase is an important source of superoxide in human blood vessels, and some studies suggest a possible association between polymorphisms in the NAD(P)H oxidase CYBA gene and atherosclerosis; however, no functional data address this hypothesis. We examined the relationships between the CYBA C242T polymorphism and direct measurements of superoxide production in human blood vessels.
METHODS AND RESULTS:
Vascular NAD(P)H oxidase activity was determined in human saphenous veins obtained from 110 patients with coronary artery disease and identified risk factors. Immunoblotting, reverse-transcription polymerase chain reaction, and DNA sequencing showed that p22phox protein, mRNA, and 242C/T allelic variants are expressed in human blood vessels. Vascular superoxide production, both basal and NADH-stimulated, was highly variable between patients, but the presence of the CYBA 242T allele was associated with significantly reduced vascular NAD(P)H oxidase activity, independent of other clinical risk factors for atherosclerosis.
CONCLUSIONS:
Association of the CYBA 242T allele with reduced NAD(P)H oxidase activity in human blood vessels suggests that genetic variation in NAD(P)H oxidase components may play a significant role in modulating superoxide production in human atherosclerosis.
Resumo:
In this paper, a biosensor based on a glassy carbon electrode (GCE) was used for the evaluation of the total antioxidant capacity (TAC) of flavours and flavoured waters. This biosensor was constructed by immobilising purine bases, guanine and adenine, on a GCE. Square wave voltammetry (SWV) was selected for the development of this methodology. Damage caused by the reactive oxygen species (ROS), superoxide radical (O2·−), generated by the xanthine/xanthine oxidase (XOD) system on the DNA-biosensor was evaluated. DNA-biosensor encountered with oxidative lesion when it was in contact with the O2·−. There was less oxidative damage when reactive antioxidants were added. The antioxidants used in this work were ascorbic acid, gallic acid, caffeic acid, coumaric acid and resveratrol. These antioxidants are capable of scavenging the superoxide radical and therefore protect the purine bases immobilized on the GCE surface. The results demonstrated that the DNA-based biosensor is suitable for the rapid assess of TAC in beverages.
Resumo:
The integrity of DNA purine bases was herein used to evaluate the antioxidant capacity. Unlike other DNA-based antioxidant sensors reported so far, the damaging agent chosen was the O 2 radical enzymatically generated by the xanthine/xanthine oxidase system. An adenine-rich oligonucleotide was adsorbed on carbon paste electrodes and subjected to radical damage in the presence/absence of several antioxidant compounds. As a result, partial damage on DNA was observed. A minor product of the radical oxidation was identified by cyclic voltammetry as a diimine adenine derivative also formed during the electrochemical oxidation of adenine/guanine bases. The protective efficiency of several antioxidant compounds was evaluated after electrochemical oxidation of the remaining unoxidized adenine bases, by measuring the electrocatalytic current of NADH mediated by the adsorbed catalyst species generated. A comparison between O 2 and OH radicals as a source of DNA lesions and the scavenging efficiency of various antioxidant compounds against both of them is discussed. Finally, the antioxidant capacity of beverages was evaluated and compared with the results obtained with an optical method.
Resumo:
Phagocyte superoxide production by a multicomponent NADPH oxidase is important in host defense against microbial invasion. However inappropriate NADPH oxidase activation causes inflammation. Endothelial cells express NADPH oxidase and endothelial oxidative stress due to prolonged NADPH oxidase activation predisposes many diseases. Discovering the mechanism of NADPH oxidase activation is essential for developing novel treatment of these diseases. The p47phox is a key regulatory subunit of NADPH oxidase; however, due to the lack of full protein structural information, the mechanistic insight of p47phox phosphorylation in NADPH oxidase activation remains incomplete. Based on crystal structures of three functional domains, we generated a computational structural model of the full p47phox protein. Using a combination of in silico phosphorylation, molecular dynamics simulation and protein/protein docking, we discovered that the C-terminal tail of p47phox is critical for stabilizing its autoinhibited structure. Ser-379 phosphorylation disrupts H-bonds that link the C-terminal tail to the autoinhibitory region (AIR) and the tandem Src homology 3 (SH3) domains, allowing the AIR to undergo phosphorylation to expose the SH3 pocket for p22phox binding. These findings were confirmed by site-directed mutagenesis and gene transfection of p47phox_/_ coronary microvascular cells. Compared with wild-type p47phoxcDNAtransfected cells, the single mutation of S379A completely blocked p47phox membrane translocation, binding to p22phox and endothelial O2 . production in response to acute stimulation of PKC. p47phox C-terminal tail plays a key role in stabilizing intramolecular interactions at rest. Ser-379 phosphorylation is a molecular switch which initiates p47phox conformational changes and NADPH oxidase-dependent superoxide production by cells.
Resumo:
Angiotensin II (Ang II) controls blood pressure, electrolyte balance, cell growth and vascular remodeling. Ang II activates NAD(P)H oxidase in several tissues with important function in the control of insulin secretion. Considering the concomitant occurrence of hypertension, insulin resistance and pancreatic B cell secretion impairment in the development of type II diabetes the aim of the present study was to evaluate the effect of ANG II on NAD(P)H oxidase activation in isolated pancreatic islets. We found that ANGII-induced superoxide generation via NAD(P)H oxidase activation and increased protein and mRNA levels of NAD(P)H oxidase subunits (p47(PHOX) and gp91(PHOX)). (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The effect of unbound palmitic acid (PA) at plasma physiological concentration range on reactive oxygen species (ROS) production by cultured rat skeletal muscle cells was investigated. The participation of the main sites of ROS production was also examined. Production of ROS was evaluated by cytochrome c reduction and dihydroethidium oxidation assays. PA increased ROS production after 1 h incubation. A xanthine oxidase inhibitor did not change PA-induced ROS production. However, the treatment with a mitochondrial uncoupler and mitochondrial complex III inhibitor decreased superoxide production induced by PA. The importance of mitochondria was also evaluated in 1 h incubated rat soleus and extensor digitorum longus (EDL) muscles. Soleus muscle, which has a greater number of mitochondria than EDL, showed a higher superoxide production induced by PA. These results indicate that mitochondrial electron transport chain is an important contributor for superoxide formation induced by PA in skeletal muscle. Results obtained with etomoxir and bromopalmitate treatment indicate that PA has to be oxidized to raise ROS production. A partial inhibition of superoxide formation induced by PA was observed by treatment with diphenylene iodonium, an inhibitor of NADPH oxidase. The participation of this enzyme complex was confirmed through an increase of p47(phox) phosphorylation after treatment with PA.
Resumo:
Nicotinamide adenine dinucleotide phosphate [NAD(P)H] oxidase complex has been shown to be involved in the process of glucose-stimulated insulin secretion (GSIS). In this study, we examined the effect of palmitic acid on superoxide production and insulin secretion by rat pancreatic islets and the mechanism involved. Rat pancreatic islets were incubated during 1 h with 1 mM palmitate, 1% fatty acid free-albumin, 5.6 or 10 mM glucose and in the presence of inhibitors of NAD(P)H oxidase (DPI-diphenyleneiodonium), PKC (calphostin C) and carnitine palmitoyl transferase-I (CPT-I) (etomoxir). Superoxide content was determined by hydroethidine assays. Palmitate increased superoxide production in the presence of 5.6 and 10 mM glucose. This effect was dependent on activation of PKC and NAD(P)H oxidase. Palmitic acid oxidation was demonstrated to contribute for the fatty acid induction of superoxide production in the presence of 5.6 mM glucose. In fact, palmitate caused p47(PHOX) translocation to plasma membrane, as shown by immunohistochemistry. Exposure to palmitate for 1 h up-regulated the protein content of p47(PHOX) and the mRNA levels of p22(PHOX), gp91(PHOX), p47(PHOX), proinsulin and the G protein-coupled receptor 40 (GPR40). Fatty acid stimulation of insulin secretion in the presence of high glucose concentration was reduced by inhibition of NAD(P)H oxidase activity. In conclusion, NAD(P)H oxidase is an important source of superoxide in pancreatic islets and the activity of NAD(P)H oxidase is involved in the control of insulin secretion by palmitate. J. Cell. Physiol. 226: 1110-1117, 2011. (C) 2010 Wiley-Liss, Inc.
Resumo:
The effects of nitrosative species on cyt c structure and peroxidase activity were investigated here in the presence of O(2)(center dot-) and anionic and zwitterionic vesicles. Nitrosative species were generated by 3-morpholinesydnonymine (SIN1) decomposition, using cyt c heme iron and/or molecular oxygen as electron acceptor. Far-and near-UV CD spectra of SIN1-treated cyt c revealed respectively a slight decrease of a-helix content (from 39 to 34%) and changes in the tryptophan structure accompanied by increased fluorescence. The Soret CD spectra displayed a significant decrease of the positive signal at 403 nm. EPR spectra revealed the presence of a low-spin cyt c form (S = 1/2) with g(1) = 2.736, g(2) = 2.465, and g(3) = 2.058 after incubation with SIN1. These data suggest that the concomitant presence of NO(center dot) and O(2)(center dot-) generated from dissolved oxygen, in a system containing cyt c and liposomes, promotes chemical and conformational modi. cations in cyt c, resulting in a hypothetical bis-histidine hexacoordinated heme iron. We also show that, paradoxically, O(2)(center dot-) prevents not only membrane lipoperoxidation by peroxide-derived radicals but also oxidation of cyt c itself due to the ability of O(2)(center dot-) to reduce heme iron. Finally, lipoperoxidation measurements showed that, although it is a more efficient peroxidase, SIN1-treated cyt c is not more effective than native cyt c in promoting damage to anionic liposomes in the presence of tert-ButylOOH, probably due to loss of affinity with negatively charged lipids. (C) 2009 Elsevier Inc. All rights reserved.