948 resultados para Structural response
Resumo:
This article examines the formal processing of domestic violence as accomplished by institutionalized policing in Singapore. The description of the process through which domestic calls for assistance were shaped and translated into relevant categories for appropriating a particular police response was facilitated through the use of the participant observation method. The ethnographic fieldwork reported here, including observations of call screening in action, is an attempt to explicate the phenomenological grounds employed by organizational members to constitute calls as instances of categories for practical policing purposes. Theoretically, the data point to the need for a reconceptualization of the problem of policing domestic violence by emphasizing the point that the eventual institutional response be understood as a product of the relationship that exists between police subculture and structural conditions of policing unique to contemporary Singapore society.
Resumo:
Traditional treatments for weight management have focussed on prescribed dietary restriction or regular exercise, or a combination of both. However recidivism for such prescribed treatments remains high, particularly among the overweight and obese. The aim of this thesis was to investigate voluntary dietary changes in the presence of prescribed mixed-mode exercise, conducted over 16 weeks. With the implementation of a single lifestyle change (exercise) it was postulated that the onerous burden of concomitant dietary and exercise compliance would be reduced, leading to voluntary lifestyle changes in such areas as diet. In addition, the failure of exercise as a single weight loss treatment has been reported to be due to compensatory energy intakes, although much of the evidence is from acute exercise studies, necessitating investigation of compensatory intakes during a long-term exercise intervention. Following 16 weeks of moderate intensity exercise, 30 overweight and obese (BMI≥25.00 kg.m-2) men and women showed small but statistically significant decreases in mean dietary fat intakes, without compensatory increases in other macronutrient or total energy intakes. Indeed total energy intakes were significantly lower for men and women following the exercise intervention, due to the decreases in dietary fat intakes. There was a risk that acceptance of the statistical validity of the small changes to dietary fat intakes may have constituted a Type 1 error, with false rejection of the Null hypothesis. Oro-sensory perceptions to changes in fat loads were therefore investigated to determine whether the measured dietary fat changes were detectable by the human palate. The ability to detect small changes in dietary fat provides sensory feedback for self-initiated dietary changes, but lean and overweight participants were unable to distinguish changes to fat loads of similar magnitudes to that measured in the exercise intervention study. Accuracy of the dietary measurement instrument was improved with the effects of random error (day-to-day variability) minimised with the use of a statistically validated 8-day, multiple-pass, 24 hour dietary recall instrument. However systematic error (underreporting) may have masked the magnitude of dietary change, particularly the reduction in dietary fat intakes. A purported biomarker (plasma Apolipoprotein A-IV) (apoA-IV) was subsequently investigated, to monitor systematic error in self-reported dietary intakes. Changes in plasma apoA-IV concentrations were directly correlated with increased and decreased changes to dietary fat intakes, suggesting that this objective marker may be a useful tool to improve the accuracy of dietary measurement in overweight and obese populations, who are susceptible to dietary underreporting.
Resumo:
The research team recognized the value of network-level Falling Weight Deflectometer (FWD) testing to evaluate the structural condition trends of flexible pavements. However, practical limitations due to the cost of testing, traffic control and safety concerns and the ability to test a large network may discourage some agencies from conducting the network-level FWD testing. For this reason, the surrogate measure of the Structural Condition Index (SCI) is suggested for use. The main purpose of the research presented in this paper is to investigate data mining strategies and to develop a prediction method of the structural condition trends for network-level applications which does not require FWD testing. The research team first evaluated the existing and historical pavement condition, distress, ride, traffic and other data attributes in the Texas Department of Transportation (TxDOT) Pavement Maintenance Information System (PMIS), applied data mining strategies to the data, discovered useful patterns and knowledge for SCI value prediction, and finally provided a reasonable measure of pavement structural condition which is correlated to the SCI. To evaluate the performance of the developed prediction approach, a case study was conducted using the SCI data calculated from the FWD data collected on flexible pavements over a 5-year period (2005 – 09) from 354 PMIS sections representing 37 pavement sections on the Texas highway system. The preliminary study results showed that the proposed approach can be used as a supportive pavement structural index in the event when FWD deflection data is not available and help pavement managers identify the timing and appropriate treatment level of preventive maintenance activities.
Resumo:
Introduction: The ability to regulate joint stiffness and coordinate movement during landing when impaired by muscle fatigue has important implications for knee function. Unfortunately, the literature examining fatigue effects on landing mechanics suffers from a lack of consensus. Inconsistent results can be attributed to variable fatigue models, as well as grouping variable responses between individuals when statistically detecting differences between conditions. There remains a need to examine fatigue effects on knee function during landing with attention to these methodological limitations. Aim: The purpose of this study therefore, was to examine the effects of isokinetic fatigue on pre-impact muscle activity and post-impact knee mechanics during landing using singlesubject analysis. Methodology: Sixteen male university students (22.6+3.2 yrs; 1.78+0.07 m; 75.7+6.3 kg) performed maximal concentric and eccentric knee extensions in a reciprocal manner on an isokinetic dynamometer and step-landing trials on 2 occasions. On the first occasion each participant performed 20 step-landing trials from a knee-high platform followed by 75 maximal contractions on the isokinetic dynamometer. The isokinetic data was used to calculate the operational definition of fatigue. On the second occasion, with a minimum rest of 14 days, participants performed 2 sets of 20 step landing trials, followed by isokinetic exercise until the operational definition of fatigue was met and a final post-fatigue set of 20 step-landing trials. Results: Single-subject analyses revealed that isokinetic fatigue of the quadriceps induced variable responses in pre impact activation of knee extensors and flexors (frequency, onset timing and amplitude) and post-impact knee mechanics(stiffness and coordination). In general however, isokinetic fatigue induced sig nificant (p<0.05) reductions in quadriceps activation frequency, delayed onset and increased amplitude. In addition, knee stiffness was significantly (p<0.05) increased in some individuals, as well as impaired sagittal coordination. Conclusions: Pre impact activation and post-impact mechanics were adjusted in patterns that were unique to the individual, which could not be identified using traditional group-based statistical analysis. The results suggested that individuals optimised knee function differently to satisfy competing demands, such as minimising energy expenditure, as well as maximising joint stability and sensory information.
Resumo:
Finding an appropriate linking method to connect different dimensional element types in a single finite element model is a key issue in the multi-scale modeling. This paper presents a mixed dimensional coupling method using multi-point constraint equations derived by equating the work done on either side of interface connecting beam elements and shell elements for constructing a finite element multiscale model. A typical steel truss frame structure is selected as case example and the reduced scale specimen of this truss section is then studied in the laboratory to measure its dynamic and static behavior in global truss and local welded details while the different analytical models are developed for numerical simulation. Comparison of dynamic and static response of the calculated results among different numerical models as well as the good agreement with those from experimental results indicates that the proposed multi-scale model is efficient and accurate.
Resumo:
Pan et al. claim that our results actually support a strong linear positive relationship between productivity and richness, whereas Fridley et al. contend that the data support a strong humped relationship. These responses illustrate how preoccupation with bivariate patterns distracts from a deeper understanding of the multivariate mechanisms that control these important ecosystem properties.