937 resultados para Structural properties
Resumo:
Este trabalho teve como objetivo descrever e analisar a rede social Cafés do Brasil rede social na Internet criada para integrar cafeicultores, agrônomos, pesquisadores e demais agentes que atuam no agronegócio café - a partir da comunicação estabelecida entre seus atores, procurando, ainda, avaliar a adequação desta nova formatação de rede social para o processo de comunicação à transferência de informação tecnológica ao setor produtivo e para a interação dos agentes que atuam nos diversos segmentos da cadeia agroindustrial do café. A principal metodologia empregada foi a Análise de Redes Sociais (ARS) que, por meio de análises matemáticas e estatísticas, fundamentadas na modelagem por meio de grafos (sociogramas), permitiu-nos não só descrever as propriedades estruturais da rede estudada, como interpretar e criar significados para as relações sociais identificadas na rede. Os resultados obtidos caracterizam a rede Cafés do Brasil como uma rede pouco conectada tanto no âmbito das relações estabelecidas entre seus atores pela troca de mensagens por e-mail, quanto nos espaços destinados à discussão e debates sobre temas relacionados ao setor. À guisa de conclusões pode-se afirmar que, apesar de possuir estrutura aberta e flexível, e ferramentas que facilitam o compartilhamento de informações, a rede Cafés do Brasil não foi capaz até o momento de integrar de forma satisfatória os agentes da cadeia agroindustrial do café que dela participam, e sua formatação atual não favorece substancialmente o processo de comunicação para a transferência de tecnologia ao setor produtivo. Com base no estudo, apresentamos sugestões para ajustes na configuração da rede de forma a adequá-la aos objetivos para os quais foi construída.(AU)
Resumo:
Phospholipids are complex and varied biomolecules that are susceptible to lipid peroxidation after attack by free radicals or electrophilic oxidants and can yield a large number of different oxidation products. There are many available methods for detecting phospholipid oxidation products, but also various limitations and problems. Electrospray ionization mass spectrometry allows the simultaneous but specific analysis of multiple species with good sensitivity and has a further advantage that it can be coupled to liquid chromatography for separation of oxidation products. Here, we explain the principles of oxidized phospholipid analysis by electrospray mass spectrometry and describe fragmentation routines for surveying the structural properties of the analytes, in particular precursor ion and neutral loss scanning. These allow targeted detection of phospholipid headgroups and identification of phospholipids containing hydroperoxides and chlorine, as well as the detection of some individual oxidation products by their specific fragmentation patterns. We describe instrument protocols for carrying out these survey routines on a QTrap5500 mass spectrometer and also for interfacing with reverse-phase liquid chromatography. The article highlights critical aspects of the analysis as well as some limitations of the methodology.
Resumo:
A range of chromia pillared montmorillonite and tin oxide pillared laponite clay catalysts, as well as new pillared clay materials such as cerium and europium oxide pillared montmorillonites were synthesised. Methods included both conventional ion exchange techniques and microwave enhanced methods to improve performance and/or reduce preparation time. These catalytic materials were characterised in detail both before and after use in order to study the effect of the preparation parameters (starting material, preparation method, pillaring species, hydroxyl to metal ratio etc.) and the hydro cracking procedure on their properties. This led to a better understanding of the nature of their structure and catalytic operation. These catalysts were evaluated with regards to their performance in hydrocracking coal derived liquids in a conventional microbomb reactor (carried out at Imperial College). Nearly all catalysts displayed better conversions when reused. The chromia pillared montmorillonite CM3 and the tin oxide pillared laponite SL2a showed the best "conversions". The intercalation of chromium in the form of chromia (Cr203) in the interlayer clearly increased conversion. This was attributed to the redox activity of the chromia pillar. However, this increase was not proportional to the increase in chromium content or basal spacing. In the case of tin oxide pillared laponite, the catalytic activity might have been a result of better access to the acid sites due to the delaminated nature of laponite, whose activity was promoted by the presence of tin oxide. The manipulation of the structural properties of the catalysts via pillaring did not seem to have any effect on the catalysts' activity. This was probably due to the collapse of the pillars under hydrocracking conditions as indicated by the similar basal spacing of the catalysts after use. However, the type of the pillaring species had a significant effect on conversion. Whereas pillaring with chromium and tin oxides increased the conversion exhibited by the parent clays, pillaring with cerium and europium oxides appeared to have a detrimental effect. The relatively good performance of the parent clays was attributed to their acid sites, coupled with their macropores which are able to accommodate the very high molecular mass of coal derived liquids. A microwave reactor operating at moderate conditions was modified for hydro cracking coal derived liquids and tested with the conventional catalyst NiMo on alumina. It was thought that microwave irradiation could enable conversion to occur at milder conditions than those conventionally used, coupled with a more effective use of hydrogen. The latter could lead to lower operating costs making the process cost effective. However, in practice excessive coke deposition took place leading to negative total conversion. This was probably due to a very low hydrogen pressure, unable to have any hydro cracking effect even under microwave irradiation. The decomposition of bio-oil under microwave irradiation was studied, aiming to identify the extent to which the properties of bio-oil change as a function of time, temperature, mode of heating, presence of char and catalyst. This information would be helpful not only for upgrading bio-oil to transport fuels, but also for any potential fuel application. During this study the rate constants of bio-oil's decomposition were calculated assuming first order kinetics.
Resumo:
Ultrathin alumina monolayers grafted onto an ordered mesoporous SBA-15 silica framework afford a composite catalyst support with unique structural properties and surface chemistry. Palladium nanoparticles deposited onto Al-SBA-15 via wet impregnation exhibit the high dispersion and surface oxidation characteristic of pure aluminas, in conjunction with the high active site densities characteristic of thermally stable, high-area mesoporous silicas. This combination confers significant rate enhancements in the aerobic selective oxidation (selox) of cinnamyl alcohol over Pd/Al-SBA-15 compared to mesoporous alumina or silica supports. Operando, liquid-phase XAS highlights the interplay between dissolved oxygen and the oxidation state of palladium nanoparticles dispersed over Al-SBA-15 towards on-stream reduction: ambient pressures of flowing oxygen are sufficient to hinder palladium oxide reduction to metal, enabling a high selox activity to be maintained, whereas rapid PdO reduction and concomitant catalyst deactivation occurs under static oxygen. Selectivity to the desired cinnamaldehyde product mirrors these trends in activity, with flowing oxygen minimising CO cleavage of the cinnamyl alcohol reactant to trans-β-methylstyrene, and of cinnamaldehyde decarbonylation to styrene. © 2013 Elsevier B.V.
Resumo:
This thesis presents a two-dimensional water model investigation and development of a multiscale method for the modelling of large systems, such as virus in water or peptide immersed in the solvent. We have implemented a two-dimensional ‘Mercedes Benz’ (MB) or BN2D water model using Molecular Dynamics. We have studied its dynamical and structural properties dependence on the model’s parameters. For the first time we derived formulas to calculate thermodynamic properties of the MB model in the microcanonical (NVE) ensemble. We also derived equations of motion in the isothermal–isobaric (NPT) ensemble. We have analysed the rotational degree of freedom of the model in both ensembles. We have developed and implemented a self-consistent multiscale method, which is able to communicate micro- and macro- scales. This multiscale method assumes, that matter consists of the two phases. One phase is related to micro- and the other to macroscale. We simulate the macro scale using Landau Lifshitz-Fluctuating Hydrodynamics, while we describe the microscale using Molecular Dynamics. We have demonstrated that the communication between the disparate scales is possible without introduction of fictitious interface or approximations which reduce the accuracy of the information exchange between the scales. We have investigated control parameters, which were introduced to control the contribution of each phases to the matter behaviour. We have shown, that microscales inherit dynamical properties of the macroscales and vice versa, depending on the concentration of each phase. We have shown, that Radial Distribution Function is not altered and velocity autocorrelation functions are gradually transformed, from Molecular Dynamics to Fluctuating Hydrodynamics description, when phase balance is changed. In this work we test our multiscale method for the liquid argon, BN2D and SPC/E water models. For the SPC/E water model we investigate microscale fluctuations which are computed using advanced mapping technique of the small scales to the large scales, which was developed by Voulgarakisand et. al.
Resumo:
The paper considers vector discrete optimization problem with linear fractional functions of criteria on a feasible set that has combinatorial properties of combinations. Structural properties of a feasible solution domain and of Pareto–optimal (efficient), weakly efficient, strictly efficient solution sets are examined. A relation between vector optimization problems on a combinatorial set of combinations and on a continuous feasible set is determined. One possible approach is proposed in order to solve a multicriteria combinatorial problem with linear- fractional functions of criteria on a set of combinations.
Resumo:
Innovation is one of the key drivers for gaining competitive advantages in any firms. Understanding knowledge transfer through inter-firm networks and its effects on types of innovation in SMEs is very important in improving SMEs innovation. This study examines relationships between characteristics of inter-firm knowledge transfer networks and types of innovation in SMEs. To achieve this, social network perspective is adopted to understand inter-firm knowledge transfer networks and its impact on innovation by investigating how and to what extend ego network characteristics are affecting types of innovation. Therefore, managers can develop the firms'network according to their strategies and requirements. First, a conceptual model and research hypotheses are proposed to establish the possible relationship between network properties and types of innovation. Three aspects of ego network are identified and adopted for hypotheses development: 1) structural properties which address the potential for resources and the context for the flow of resources, 2) relational properties which reflect the quality of resource flows, and 3) nodal properties which are about quality and variety of resources and capabilities of the ego partners. A questionnaire has been designed based on the hypotheses. Second, semistructured interviews with managers of five SMEs have been carried out, and a thematic qualitative analysis of these interviews has been performed. The interviews helped to revise the questionnaire and provided preliminary evidence to support the hypotheses. Insights from the preliminary investigation also helped to develop research plan for the next stage of this research.
Resumo:
An efficient route to stabilize alumina mesophases derived from evaporation-induced self-assembly is reported after investigating various aspects in-depth: influence of the solvent (EtOH, s-BuOH, and t-BuOH) on the textural and structural properties of the mesophases based on aluminum tri-sec-butoxide (ATSB), synthesis reproducibility, role of nonvolatile acids, and the crystallization and thermal stability of the crystalline counterparts. Mesophase specific surface area and pore uniformity depend notably on the solvent; s-BuOH yields the highest surface area and pore uniformity. The optimal mesophase synthesis is reproducible with standard deviations in the textural parameters below 5%. The most pore-uniform mesophases from the three solvents were thermally activated at 1023 K to crystallize them into γ-alumina. The s-BuOH mesophase is remarkably thermally stable, retaining the mesoscopic wormhole order with 300 m2/g (0.45 cm3/g) and an increased acidic site density. These features are not obtained with EtOH or t-BuOH, where agglomerated γ-Al2O3 crystallites are formed with lower surface areas and broader pore size distributions. This was rationalized by the increase of the hydrolysis rate using EtOH and t-BuOH. t-BuOH dehydrates under the synthesis conditions or reacts with HCl, situations that increase the water concentration and rate of hydrolysis. It was found that EtOH exchanges rapidly, producing a highly reactive Al-ethoxide, thus enhancing the hydrolysis rate as well. Particle heterogeneity with random packing of fibrous and wormhole morphologies, attributed to the high hydrolysis rate, was observed for mesophases derived from both solvents. Such a low particle coordination favors coarsening with enlargement of the pore size distribution upon thermal treatment, explaining the lower thermal stability. Controlled hydrolysis and formation of low-polymerized Al species in s-BuOH are possibly responsible for the adequate assembly onto the surfactant. This was verified by the formation of a regular distribution of relatively size-uniform nanoparticles in the mesophase; high particle coordination prevents coarsening, favors densification, and maintains a relatively uniform pore size distribution upon thermal treatment. The acid removal in the evaporation is another key factor to promote network condensation in this route. © 2013 American Chemical Society.
Resumo:
One goal of comparative immunology is to derive inferences about evolutionary pathways in the development of immune-defense systems. Almost 700 million years ago, a major divergence occurred in the phylogeny of animals, spitting all descendants into either the protostome or deuterostome (includes vertebrates) lineages. Genes have evolved independently along these lineages for that amount of time. Cnidarians originated before that divergence event, and can hold clues as to which immune response genes are homologous to both lineages. This work uses the gorgonian coral, Swiftia exserta, for two major reasons: (1) because of their phylogenetic position, corals are an important animal model in studies concerning the phylogeny of immune-response genes, and (2) nothing is known about the genes controlling immunocompetence in corals. The work described here has important implications in both innate and adaptive immunity. ^ The vertebrate complement system is a major component of innate immunity. C3 is a critical component of the three pathways of complement. Because of its opsonic properties, a C3-like protein is expected to have evolved early. However, currently available data suggests that complement-like components are unique to the deuterostome lineage. This work describes the cloning and characterization of a C3-like gene from S. exserta. The deduced polypeptide sequence reveals conservation of multiple, functionally critical, sites while sharing physiochemical and structural properties with the complement components C3/C4/C5. ^ Antigen processing, via intracellular enzymatic proteasomes, is a major requirement of vertebrate adaptive immunity. These organelles have a catalytic core, through which pass intracellular proteins for degradation into peptides presentable to the immune system. LMP 7 is one component of the paralogous “immuno-proteasome”. LMP 7 is a paralog of the ubiquitous LMP X, but is restricted to vertebrates. While LMP 7 is absent in the coral, this work describes a coral LMP X gene. Phylogenetic analyses, along with hydropathy profiling of a critical portion of the invertebrate and vertebrate paralogous genes, suggests that some invertebrates have two diverging LMP X genes. In some cases, one LMP X protein shares characteristics with vertebrate LMP 7. This work presents new evidence for how the LMP X and 7 genes evolved. ^
Resumo:
Access to healthcare is a major problem in which patients are deprived of receiving timely admission to healthcare. Poor access has resulted in significant but avoidable healthcare cost, poor quality of healthcare, and deterioration in the general public health. Advanced Access is a simple and direct approach to appointment scheduling in which the majority of a clinic's appointments slots are kept open in order to provide access for immediate or same day healthcare needs and therefore, alleviate the problem of poor access the healthcare. This research formulates a non-linear discrete stochastic mathematical model of the Advanced Access appointment scheduling policy. The model objective is to maximize the expected profit of the clinic subject to constraints on minimum access to healthcare provided. Patient behavior is characterized with probabilities for no-show, balking, and related patient choices. Structural properties of the model are analyzed to determine whether Advanced Access patient scheduling is feasible. To solve the complex combinatorial optimization problem, a heuristic that combines greedy construction algorithm and neighborhood improvement search was developed. The model and the heuristic were used to evaluate the Advanced Access patient appointment policy compared to existing policies. Trade-off between profit and access to healthcare are established, and parameter analysis of input parameters was performed. The trade-off curve is a characteristic curve and was observed to be concave. This implies that there exists an access level at which at which the clinic can be operated at optimal profit that can be realized. The results also show that, in many scenarios by switching from existing scheduling policy to Advanced Access policy clinics can improve access without any decrease in profit. Further, the success of Advanced Access policy in providing improved access and/or profit depends on the expected value of demand, variation in demand, and the ratio of demand for same day and advanced appointments. The contributions of the dissertation are a model of Advanced Access patient scheduling, a heuristic to solve the model, and the use of the model to understand the scheduling policy trade-offs which healthcare clinic managers must make. ^
Resumo:
Chloroperoxidase (CPO) is a heme-containing glycoprotein secreted by the marine fungus Caldariomyces fumago. Chloroperoxidase contains one ferriprotoporphyrin IX prosthetic group per molecule and catalyzes a variety of reactions, such as halogenation, peroxidation and epoxidation. The versatile catalytic activities of CPO coupled with the increasing demands for chiral synthesis have attracted an escalating interest in understanding the mechanistic and structural properties of this enzyme. In order to better understand the mechanisms of CPO-catalyzed enantioselective reactions and to fine-tune the catalytic properties of chloroperoxidase, asparagine 74 (N74) located in the narrow substrate access channel of CPO was replaced by a bulky, nonpolar valine and a polar glutamine using site-directed mutagenesis. The CPO N74 mutants displayed significantly enhanced activity toward nonpolar substrates compared to wild-type CPO as a result of changes in space and polarity of the heme distal environment. More interestingly, N74 mutants showed dramatically decreased chlorination and catalase activity but significantly enhanced epoxidation activity as a consequence of improved kinetic perfection introduced by the mutation as reflected by the favorable changes in k cat and kcat/KM of these reactions. It is also noted that the N74V mutant is capable of decomposing cyanide, the most notorious poison for many hemoproteins, as judged by the unique binding behavior of N74V with potassium cyanide. Histidine 105 (H105) was replaced by a nonpolar amino acid alanine using site-directed mutagenesis. The CPO H105 mutant (H105A) displayed dramatically decreased chlorination and catalase activity possibly because of the decreased polarity in the heme distal environment and loss of the hydrogen bonds between histidine 105 and glutamic acid 183. However, significantly increased enantioselectivity was observed for the epoxidation of bulky styrene derivatives. Furthermore, my study provides strong evidence for the proposed histidine/cysteine ligand switch in chloroperoxidase, providing experimental support for the structure of the 420-nm absorption maximum for a number of carbon monoxide complexes of heme-thiolate proteins. For the NMR study, [dCPO(heme)] was produced using 90% deuterated growth medium with excess heme precursors and [dCPO(Phe)] was grown in the same highly deuterated medium that had been supplemented with excess natural phenylalanine. To make complete heme proton assignments, NMR spectroscopy has been performed for high-resolution structural characterization of [dCPO(heme)] and [dCPO(Phe)] to achieve unambiguous and complete heme proton assignments, which also allows important amino acids close to the heme active center to be determined.
Resumo:
Tall buildings are wind-sensitive structures and could experience high wind-induced effects. Aerodynamic boundary layer wind tunnel testing has been the most commonly used method for estimating wind effects on tall buildings. Design wind effects on tall buildings are estimated through analytical processing of the data obtained from aerodynamic wind tunnel tests. Even though it is widely agreed that the data obtained from wind tunnel testing is fairly reliable the post-test analytical procedures are still argued to have remarkable uncertainties. This research work attempted to assess the uncertainties occurring at different stages of the post-test analytical procedures in detail and suggest improved techniques for reducing the uncertainties. Results of the study showed that traditionally used simplifying approximations, particularly in the frequency domain approach, could cause significant uncertainties in estimating aerodynamic wind-induced responses. Based on identified shortcomings, a more accurate dual aerodynamic data analysis framework which works in the frequency and time domains was developed. The comprehensive analysis framework allows estimating modal, resultant and peak values of various wind-induced responses of a tall building more accurately. Estimating design wind effects on tall buildings also requires synthesizing the wind tunnel data with local climatological data of the study site. A novel copula based approach was developed for accurately synthesizing aerodynamic and climatological data up on investigating the causes of significant uncertainties in currently used synthesizing techniques. Improvement of the new approach over the existing techniques was also illustrated with a case study on a 50 story building. At last, a practical dynamic optimization approach was suggested for tuning structural properties of tall buildings towards attaining optimum performance against wind loads with less number of design iterations.
Resumo:
L’utilisation de nanovecteurs pour la livraison contrôlée de principes actifs est un concept commun de nous jours. Les systèmes de livraison actuels présentent encore cependant des limites au niveau du taux de relargage des principes actifs ainsi que de la stabilité des transporteurs. Les systèmes composés à la fois de nanovecteurs (liposomes, microgels et nanogels) et d’hydrogels peuvent cependant permettre de résoudre ces problèmes. Dans cette étude, nous avons développé un système de livraison contrôlé se basant sur l’incorporation d’un nanovecteur dans une matrice hydrogel dans le but de combler les lacunes des systèmes se basant sur un vecteur uniquement. Une telle combinaison pourrait permettre un contrôle accru du relargage par stabilisation réciproque. Plus spécifiquement, nous avons développé un hydrogel structuré intégrant des liposomes, microgels et nanogels séparément chargés en principes actifs modèles potentiellement relargués de manière contrôlé. Ce contrôle a été obtenu par la modification de différents paramètres tels que la température ainsi que la composition et la concentration en nanovecteurs. Nous avons comparé la capacité de chargement et la cinétique de relargage de la sulforhodamine B et de la rhodamine 6G en utilisant des liposomes de DOPC et DPPC à différents ratios, des nanogels de chitosan/acide hyaluronique et des microgels de N-isopropylacrylamide (NIPAM) à différents ratios d’acide méthacrylique, incorporés dans un hydrogel modèle d’acrylamide. Les liposomes présentaient des capacités de chargement modérés avec un relargage prolongé sur plus de dix jours alors que les nanogels présentaient des capacités de chargement plus élevées mais une cinétique de relargage plus rapide avec un épuisement de la cargaison en deux jours. Comparativement, les microgels relarguaient complétement leur contenu en un jour. Malgré une cinétique de relargage plus rapide, les microgels ont démontré la possibilité de contrôler finement le chargement en principe actif. Ce contrôle peut être atteint par la modification des propriétés structurelles ou en changeant le milieu d’incubation, comme l’a montré la corrélation avec les isothermes de Langmuir. Chaque système développé a démontré un potentiel contrôle du taux de relargage, ce qui en fait des candidats pour des investigations futures.